

BASELINE HYDROLOGY

FEBRUARY 22, 2019

8100 East Maplewood Avenue, Suite 150
Greenwood Village, CO 80111

CHERRY CREEK MINOR TRIBUTARIES

IN ARAPAHOE COUNTY

Major Drainageway Plan

BASELINE HYDROLOGY

February 22, 2019

PREPARED FOR:

URBAN DRAINAGE AND FLOOD CONTROL DISTRICT

2480 West 26th Avenue, 156-B Denver, Colorado 80211 Phone: 303-455-6277

CITY OF AURORA

15151 East Alameda Parkway, Suite 3200 Aurora, Colorado 80012 Phone: 303-739-7646

SOUTHEAST METRO STORMWATER AUTHORITY

7437 South Fairplay Street Centennial, CO 80112 Phone: 303-858-8844

ARAPAHOE COUNTY

6924 South Lima Street Centennial, CO 80112 Buckley, Colorado 80011 Phone: 720-874-6500

PREPARED BY:

Dewberry | J3

8100 East Maplewood Avenue Greenwood Village, Colorado 80111 Phone: 303-368-5601

Fax: 303-368-5603

February 22, 2019

Ms. Shea Thomas – Manager, Watershed Services Urban Drainage and Flood Control District 2480 West 26th Avenue, Suite 156-B Denver, Colorado 80211

Subject: Cherry Creek Minor Tributaries

In Arapahoe County

Major Drainageway Plan Baseline Hydrology

UDFCD Agreement No. 18-08.13

Dewberry | J3 is pleased to submit this Baseline Hydrology Report for Cherry Creek Minor Tributaries in Arapahoe County to the Urban Drainage and Flood Control District, the Southeast Metro Stormwater Authority, and the City of Aurora.

This report provides new or updated hydrology for eleven (11) major basins upstream of Cherry Creek Reservoir, several of which were generally studied in a 1999 OSP by WRC. This phase provides baseline hydrology, and subsequent reports will include flood hazard area mapping, alternatives analysis, and conceptual design. These efforts will result in a Major Drainageway Plan and Flood Hazard Area Delineation. Included within the study area are more than twenty (20) miles of drainageways, which convey stormwater runoff from approximately 4,320 acres. Drivers for this project include providing additional data for unstudied areas, updating data from previously studied areas, quantifying potential impacts caused by limited regional detention, and providing guidance for development that is anticipated with the King's Point Development near 17 Mile Farm House.

The project team at Dewberry | J3 acknowledges and thanks the Urban Drainage Flood Control District, the Southeast Metro Stormwater Authority, the City of Aurora, and Arapahoe County for their assistance and cooperation in the preparation of this study. We look forward to your review, and comments to this report. Thank you for the opportunity to complete this portion of the project.

Sincerely,

Dewberry | J3

Ken S. Cecil, P.E., CFM Client Manager

Danny Elsner, P.E., CFM Senior Project Manager

Allie Beikmann, P.E. Project Engineer

Haley Heinemann, E.I. Staff Engineer

TABLE OF CONTENTS

SECTION 1.	INTRODUCTION	1-1
1.1	AUTHORIZATION	1-1
1.2	PURPOSE AND SCOPE	1-1
1.3	MAJOR DRAINAGEWAY PLANNING PROCESS	1-1
1.4	MAPPING AND SURVEYS	1-2
1.5	DATA COLLECTION	1-2
1.6	ACKNOWLEDGEMENTS	1-3
SECTION 2.	STUDY AREA DESCRIPTION	2-1
2.1	PROJECT AREA	2-1
2.2	TRIBUTARY DESCRIPTIONS	2-1
2.3	LAND USE	2-6
2.4	REACH DESCRIPTION – N/A	2-7
2.5	FLOOD HISTORY	2-7
2.6	ENVIRONMENTAL ASSESSMENT – N/A	2-7
SECTION 3.	HYDROLOGIC ANALYSIS	3-1
3.1	OVERVIEW	3-1
3.2	DESIGN RAINFALL	3-1
3.3	SUBWATERSHED CHARACTERISTICS	3-1
	3.3.1 SUBWATERSHED DELINEATION	3-1
	3.3.2 WATERSHED IMPERVIOUSNESS	3-2
	3.3.3 NRCS SOIL INFORMATION	3-2
3.4	DETENTION	3-2
3.5	HYDROGRAPH ROUTING	3-3
3.6	PREVIOUS STUDIES	3-4
3.7	RESULTS OF ANALYSIS	3-4

SECTION 4.	REFERENCES4-1
LIST OF TABLES	
Table 1-1. Summary of	Progress Meetings
Table 1-2. Collected Da	ta 1-2
Table 2-1. Watershed A	Areas and Tributary Lengths2-1
Table 2-2. Watershed S	lopes and Shapes2-3
Table 2-3. Watershed (Outfalls and Jurisdictions2-3
Table 2-4. Land Use Ca	tegories and Imperviousness2-7
Table 2-5. Inventory of	Existing Structures
Table 3-1. Point Rainfa	l
Table 3-3. Peak Flows a	t Key Design Points
Table 3-3. Rainfall Dept	:hs, 1999 OSP vs. MDP
Table 3-4. 100-year Pea	ak Flows, 1999 OSP vs. Current MDP
LIST OF FIGURE	S
Figure 2-1. Vicinity Ma	o for Cherry Creek Minor Tributaries in Arapahoe County
Figure 2-2. Project Area	a Map2-2

APPENDICES

APPENDIX A PROJECT CORRESPONDENCE

Kickoff Meeting Minutes

Progress Meeting Minutes

Baseline Hydrology Comment Review Meeting Minutes

Baseline Hydrology Comment Response Summary

APPENDIX B HYDROLOGIC ANALYSIS

Figure B-1: Baseline Hydrology Map

Interactive Sheets:

Sheet 1: Study Area Map

Sheet 2: Soils Map

Sheet 3: Existing Land Use Map

Sheet 4: Future Land Use Map

Sheet 5: Subwatershed Boundaries Map

Sheet 6: Baseline Hydrology SWMM Routing Map

Figure B-2: Land Use References

Sheet 1: Land Use Sources

Sheet 2: Arapahoe County Land Use Data

Sheet 3: City of Aurora Zoning Data

Centennial NEXT Future Land Use Map

Figure B-3: SWMM Routing Schematic (Sheets 1-2)

Figure B-4: Baseline Hydrographs (Sheets 1-4)

Figure B-5: Baseline Peak Flow Profiles (Sheets 1-3)

Table B-1: Rainfall Distributions (Sheets 1-2)

Table B-2: CUHP Subcatchment Input Data (Sheets 1-2)

Table B-3: Detention Basin Rating Curves

RB1-4 Regional Detention Basin Information

North Arapahoe Detention Basin Information

Table B-4: Baseline Peak Flows and Runoff Volumes (Sheets 1-4)

Table B-5: 100-year SWMM Input & Output, Existing Conditions (Sheets 1-15)

Table B-6: 100-year SWMM Input & Output, Future Conditions (Sheets 1-15)

Ħ

SECTION 1. INTRODUCTION

1.1 AUTHORIZATION

The Urban Drainage and Flood Control District (UDFCD) contracted with Dewberry | J3 for engineering services to complete a Major Drainageway Plan for Cherry Creek Minor Tributaries in Arapahoe County. This report was authorized by the following project sponsors: UDFCD, the Southeast Metro Stormwater Authority (SEMSWA), and the City of Aurora (COA). Arapahoe County (AC) is also involved in this project as a stakeholder. The specific tasks completed during this project were performed in accordance with the Agreement: Contract No. 18-08.13 executed on August 30, 2018.

1.2 PURPOSE AND SCOPE

This report documents the Major Drainageway Plan (MDP) for eleven (11) major basins that are tributary to Cherry Creek. One tributary discharges directly to Cherry Creek Reservoir through Cherry Creek State Park, while another is a left bank tributary to Cottonwood Creek, with its confluence just upstream of Cherry Creek Reservoir. Seven (7) of these tributaries were previously unnamed and are subsequently named herein. The remaining three (3) named tributaries are Chenango Tributary, Joplin Tributary and Valley Club Acres Tributary. Seven (7) tributaries and four (4) DFAs were previously studied in the 1999 Cherry Creek Corridor Reservoir to County Line Outfall Systems Plan by WRC (WRC Engineering, Inc., 1999). This data is approximately twenty (20) years old at the time of this study and does not reflect all revisions to land use. Four (4) notable areas of interest are the undeveloped areas within the watershed of Kragelund Tributary; drainage across the 17 Mile Farm property; the Grove Ranch area and active erosion at the Pioneer Hills Development. Additionally, two (2) existing detention ponds, one (1) on Joplin Tributary and one (1) on North Arapahoe Tributary, are included in this analysis. This project provides new and updated hydrology, flood hazard area mapping, alternatives analysis, and conceptual design for specific improvements that correct any deficiencies that are identified.

The project is comprised of four (4) distinct phases, with each subsequent phase building upon the results of the prior phase. In order, these are Baseline Hydrology, Flood Hazard Area Delineation, Alternatives Analysis, and Conceptual Design.

Objectives for this report include the following:

1. Quantify project hydrology,

- 2. Quantify magnitude of runoff and associated flood risks,
- 3. Identify alternatives to address flood hazards and/or conveyance deficiencies, and
- 4. Provide conceptual design for recommended improvements.

1.3 MAJOR DRAINAGEWAY PLANNING PROCESS

The Cherry Creek Minor Tributaries in Arapahoe County MDP and FHAD was initiated by the sponsoring agencies of UDFCD, SEMSWA, and the COA, with Arapahoe County providing additional input as a project stakeholder. Each is a collaborative participant in the development of this document.

Table 1-1 summarizes the critical decisions made at project progress meetings. All meetings were organized by Dewberry | J3 and meeting invitations were provided electronically to the necessary participants. See **Appendix A** for complete meeting minutes and lists of attendees for reference.

Table 1-1. Summary of Progress Meetings

Progress Meetings	Purpose			
	Identified five (5) additional tributaries to be included with the project and			
	provided the exact project limits. Several areas of interest were identified:			
Cantambar 10, 2019	undeveloped areas within Kragelund Tributary, drainage across the 17 Mile Farm			
September 10, 2018	property, the Grove Ranch area and active erosion within the Pioneer Hills			
Project Kickoff Meeting	Development. Additionally, existing regional detention ponds were identified at			
	Pond RB1-4 (Joplin Tributary) and near the S. Parker/E. Arapahoe Rd. Interchange			
	(North Arapahoe Tributary).			
	The project schedule was extended to account for the research and addition of five			
	(5) tributaries to the project scope. There are no significant drainage issues that			
0.4.4.4.22.2040	the stakeholders are aware of, other than the areas of interest introduced at the			
October 23, 2018	Kickoff Meeting. Future conditions hydrology is required for all basins. Because			
Progress Meeting No. 1	the southern two (2) basins are undeveloped, the project team will also evaluate			
	existing conditions hydrology for these basins only (Kragelund Tributary and 17			
	Mile Tributary).			

Portions of the project area have been studied in an Outfall Systems Plan that was completed in 1999 (WRC Engineering, Inc., 1999). However, a detailed hydraulic analysis to define the distinct floodplains has not been completed. Therefore, the project stakeholders' primary goals are to confirm the hydrology, define the floodplain and flood risks, and to evaluate alternatives to reduce or eliminate those risks, as necessary. This Major Drainageway Plan makes it possible to evaluate necessary improvements to reduce peak flows and stabilize tributary reaches by implementing detention (if possible), grade control, and water quality facilities. Any proposed improvements will be developed to minimize flooding impacts and reduce the risk to habitable structures and infrastructure.

1.4 MAPPING AND SURVEYS

One-foot contours from 2014 USGS LiDAR data were provided by UDFCD for the Project Area, as well as a structure survey for detailed information at each crossing. Other information such as jurisdictional boundaries, stormwater infrastructure, and roadways were obtained from the COA, SEMSWA, and Arapahoe County. All data is spatially referenced using the *NAD 1983 Colorado State Plane*, *Central Zone* projected coordinate system and vertical elevations for the contours are referenced using the *NAVD 1988* vertical datum.

1.5 DATA COLLECTION

Background research and data collection were required to conduct the analysis and to develop this Major Drainageway Plan. This included development plans, drainage reports, topographic data, land use data and miscellaneous items. Stakeholders provided much of the topographic and land use data while Dewberry | J3 located the remainder. These sources are identified in Table 1-2.

Table 1-2. Collected Data

Source	Date	Description
UDFCD	Sep 25, 2018	One-foot LIDAR contour shapefiles developed by the USGS in 2014.
UDFCD	Nov 5, 2018	Detailed structure surveys by Wilson & Co were provided as AutoCAD electronic files.
City of Aurora & SEMSWA	Nov 27 & Sep 27, 2018	Detailed mapping of stormwater infrastructure was downloaded from the public domain as shapefiles.
Arapahoe County	Nov 27, 2018	Partial land use data, including the 2018 Comprehensive Plan provided as shapefiles. Dewberry J3 created shapefiles where data was incomplete.
SEMSWA	Sep 27, 2018	Impervious data for incorporated areas within the City of Centennial. Dewberry J3 created project shape files to describe resultant Land Use.
Arapahoe County & City of Aurora	Nov 27, 2018	Zoning data for some areas. Dewberry J3 considered these shape files when developing a Land Use layer.
National Land Cover Database	Nov 20, 2018	NLCD raster image with land use categories for entire area. Dewberry J3 used this information to backcheck the Land Use layer.
City of Aurora	Oct 1, 2018	Digital PDF copies of development plans for the Kings Point Development.
SEMSWA & Arapahoe County	Dec 5, 2018	Development Plans for King's Point, Basin RB1-Pond 4 (RB1-4) Drainage Improvements, and Filings 7,8 & 9 of the Farm at Arapahoe County.
Arapahoe County	Nov 27, 2018	Natural water elements including streams and lakes.

1.6 ACKNOWLEDGEMENTS

Dewberry | J3 wishes to acknowledge the various individuals who assisted in the preparation of this Master Plan and who provided valuable contributions. The following individuals and the agencies they represented are:

Shea Thomas, PE UDFCD – Watershed Services Manager

Rich Borchardt, PE, CFM UDFCD – Cherry Creek Watershed Project Manager

Stacey Thompson, CFM SEMSWA – Group Manager, Floodplain and Master Planning

Angela Howard, PE, CFM, LEED® AP SEMSWA – Master Plan Coordinator

Cathleen Valencia, PE Arapahoe County Public Works & Development – Engineer II

Roger Harvey Arapahoe County – Open Space Planning Administrator

Craig Perl, PE, CFM City of Aurora – Senior Engineer, Floodplain Administrator

Jonathan Villines, PE, CFM Aurora Water – Engineer

The following project team members contributed to the preparation of this Master Plan:

Ken Cecil, PE, CFM Dewberry | J3 – Senior Project Manager / Client Manager

Allie Beikmann, PE Dewberry | J3 – Project Engineer

Danny Elsner, PE, CFM Dewberry | J3 – Senior Project Manager

Haley Heinemann, El Dewberry | J3 – Staff Engineer

Dana McGlone Dewberry | J3 – Staff Hydrologist

SECTION 2. STUDY AREA DESCRIPTION

2.1 PROJECT AREA

The project area consists of eleven (11) tributaries upstream of Cherry Creek Reservoir within Arapahoe County (Project Reuse Watershed No. 4600). The watersheds are within the Cities of Aurora, Centennial, and Greenwood Village, the Town of Foxfield, and unincorporated Arapahoe County. A vicinity map is shown in Figure 2-1, and Figure 2-2 provides a detailed Project Area Map that shows the major basins.

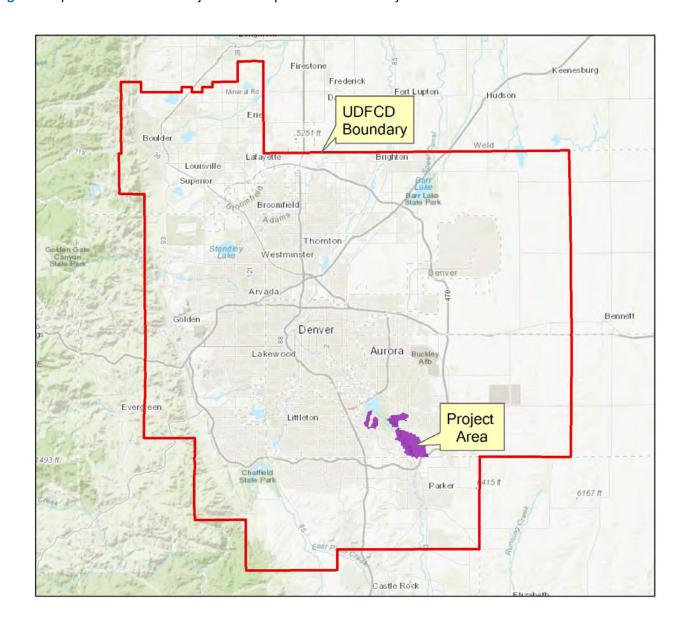


Figure 2-1. Vicinity Map for Cherry Creek Minor Tributaries in Arapahoe County

The overall project area is roughly bounded by Cherry Creek Reservoir to the north, S. Dayton St. to the west, S. Himalaya Way to the east, and the county line and E-470 to the south. Eight (8) of the tributaries are bounded by Piney Creek to the north and the county line to the south, and outfall to Cherry Creek. Joplin lies north of Piney Creek, bounded by E. Smoky Hill Rd, and outfalls to Cherry Creek. Two (2) tributaries do not outfall to Cherry Creek: Little Raven Creek and Suhaka Creek. Little Raven Creek outfalls directly to the reservoir and is bounded to the south by E. Orchard Rd. Suhaka Creek outfalls to Cottonwood Creek just upstream of the reservoir, and the basin is bounded to the west by S. Havana St. The total watershed area studied is approximately 6.75 square miles or 4,320 acres.

2.2 TRIBUTARY DESCRIPTIONS

This study analyzes eleven (11) major basins and their associated drainageway, each of which are tributary to Cherry Creek. This section summarizes important watershed characteristics and includes qualitative descriptions of the tributaries and associated basins. General tributary and watershed characteristics are described in **Table 2-1** and **Table 2-2**, and outfall and jurisdictional information is provided in **Table 2-3**.

Table 2-1. Watershed Areas and Tributary Lengths

Tributary	Tributary Length		Watershed Area	
Tibutary	(ft)	(mi)	(ac)	(mi²)
Little Raven Creek (LR)	7,700	1.5	349	0.55
Suhaka Creek (S)	6,100	1.2	360	0.56
Joplin Tributary (J)	10,420	2.0	774	1.21
Grove Ranch Tributary (GR)	4,450	0.8	81	0.13
Valley Club Acres Tributary (VCA)	5,350	1.0	207	0.32
North Arapahoe Tributary (NA)	11,220	2.1	372	0.58
South Arapahoe Tributary (SA)	9,400	1.8	396	0.62
Chenango Tributary (C)	13,900	2.6	917	1.43
Tagawa Tributary (T)	5,760	1.1	107	0.17
Kragelund Tributary (K)	12,390	2.3	611	0.95
17 Mile Tributary (17)	3,340	0.6	145	0.23
		TOTAL	4,319	6.75

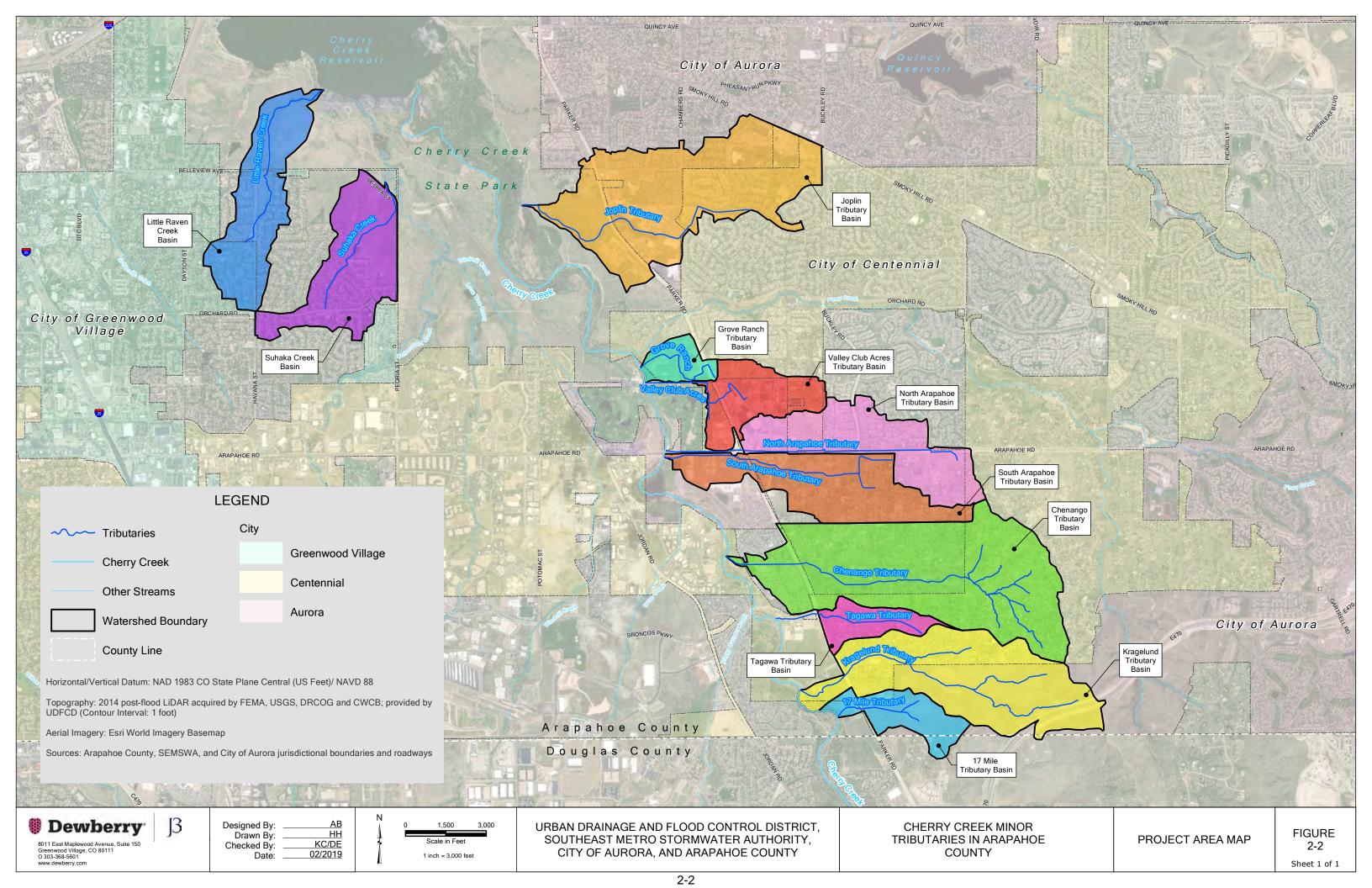


Table 2-2. Watershed Slopes and Shapes

Tributary	Highest Elevation	Lowest Elevation	Average Slope	Watershed Shape		
Tributary	(ft)	(ft)	(%)	Length (ft)	Width (ft)	
Little Raven Creek (LR)	5,757	5,552	2.4%	8,630	2,740	
Suhaka Creek (S)	5,769	5,565	2.3%	7,480	2,600	
Joplin Tributary (J)	5,819	5,579	2.2%	11,400	5,960	
Grove Ranch Tributary (GR)	5,695	5,620	1.7%	2,880	1,700	
Valley Club Acres Tributary (VCA)	5,804	5,622	2.1%	6,700	3,400	
North Arapahoe Tributary (NA)	5,906	5,672	2.3%	8,400	2,000	
South Arapahoe Tributary (SA)	5,912	5,633	2.4%	11,600	2,500	
Chenango Tributary (C)	6,039	5,658	3.7%	13,100	4,960	
Tagawa Tributary (T)	5,889	5,710	3.3%	5,300	1,950	
Kragelund Tributary (K)	6,088	5,690	4.1%	9,700	3,400	
17 Mile Tributary (17)	5,909	5,695	4.4%	5,530	2,000	

Little Raven Creek (LR), previously referred to as North Unnamed Tributary, conveys runoff from an approximately 350-acre basin and is 7,700 feet in length. The tributary is largely controlled by Cherry Creek State Park and is the only tributary, as part of this study, with an immediate outfall into Cherry Creek Reservoir. Regional detention and water quality are not present. Upstream of the reservoir, the tributary crosses under W. Lakeview Rd., which is located within the park and utilizes a partially buried, corrugated metal pipe (CMP) to convey the tributary flow. This pipe is a 36" CMP and partially silted in. Upstream to E. Belleview Ave., the tributary is dominated by dense vegetation, several mono-culture cattail areas, and a pedestrian trail crossing named "Pope Trail". The second road crossing is E. Belleview Ave. which utilizes two (2) reinforced concrete pipes (RCPs), vertically offset by five (5) feet, to convey the tributary flow. Upstream and south of E. Belleview Ave. is a wide storage basin with no outlet controls in place. This area is adjacent to The Hills development and is owned by Cherry Creek State Park. It inadvertently provides detention, however, does not appear to be maintained and thus is not included in evaluation. The tributary continues upstream of Cherry Creek State Park through Bear Park and across S. Havana St. via an elliptical 52" x 32" RCP. Finally, the tributary continues upstream through a small concrete channel adjacent to the Hills West Swimming Pool and on to an open area that collects overland flow.

This tributary basin includes about 93 acres in the City of Greenwood Village and 256 acres in unincorporated Arapahoe County, 133 acres of which is served by SEMSWA. The area not served by SEMSWA is owned by Cherry Creek State Park. The area is fully built out and there are no vacant properties for future development within this basin. Site visits indicate that small reaches within the State Park may present the most significant challenge where active bank erosion is notable. There is at least one (1) exposed utility present, and erosion is occurring in another location along the right bank.

Table 2-3. Watershed Outfalls and Jurisdictions

Tributary	Outfall	Jurisdiction
Little Raven Creek (LR)	Cherry Creek Reservoir	SEMSWA, Unincorporated Arapahoe County, City of Greenwood Village
Suhaka Creek (S) Cottonwood Creek		SEMSWA, Unincorporated Arapahoe County, City of Greenwood Village
Joplin Tributary (J)	Cherry Creek	SEMSWA, City of Aurora, Unincorporated Arapahoe County
Grove Ranch Tributary (GR)	Cherry Creek	SEMSWA
Valley Club Acres Tributary (VCA)	Cherry Creek	SEMSWA, City of Aurora
North Arapahoe Tributary (NA)	Cherry Creek	SEMSWA, City of Aurora, Town of Foxfield
South Arapahoe Tributary (SA)	Cherry Creek	SEMSWA, City of Aurora, Unincorporated Arapahoe County, Town of Foxfield
Chenango Tributary (C)	Cherry Creek	SEMSWA, City of Aurora, Unincorporated Arapahoe County, Town of Foxfield
Tagawa Tributary (T)	Cherry Creek	SEMSWA
Kragelund Tributary (K)	Cherry Creek	SEMSWA, City of Aurora
17 Mile Tributary (17)	Cherry Creek	SEMSWA, City of Aurora

Suhaka Creek (S) was added to the project scope of work during the Kickoff Meeting since it has not been previously studied. After the Comment Review meeting the name was changed from Tributary to Cottonwood Creek (TC) to Suhaka Creek, as described in the meeting minutes. The tributary is a left bank tributary to Cottonwood Creek, which discharges to Cherry Creek Reservoir. The drainageway conveys runoff from approximately 360 acres of single-family development with open space at the downstream reaches. The major stormwater conveyance system is comprised of open channel flow that begins upstream near E. Orchard Rd. Further downstream, it crosses Cherry Creek Dr. with two (2) 48" RCPs. After this point, the tributary flows through a stock pond that is contained on the downstream end by a berm and an elevated broad-crested weir, and is subsequently conveyed as sheet flow to S. Peoria St. Runoff ponds behind a small inlet structure with an orifice plate and overflow grate and upon entering the structure, flows under S. Peoria St. via two (2) 12" RCP pipes. Flow then continues through a natural earthen channel to Cottonwood Creek.

Most of the watershed lies in unincorporated Arapahoe County with a small 9-acre area located in Greenwood Village near Lake Ct. Approximately 193 acres of this area is served by SEMSWA and the area not served by SEMSWA is owned by Cherry Creek State Park. Challenges include erosion upstream of the stock pond, poorly defined hydraulics from the stock pond to the outfall and lack of ponds that provide water quality or extended detention.

Joplin Tributary (J) is a large tributary to Cherry Creek and is approximately 9,700 feet in length. The downstream half of the tributary runs through Cherry Creek State Park where it crosses multiple park trails, and the other half upstream of S. Parker Rd. conveys runoff from dense, mixed-use developments comprised of commercial big box stores and single- and multi-family developments in the Cities of Aurora and Centennial. The drainageway conveys runoff from 775 acres with 600 acres in the upstream portion. Runoff crosses S. Parker Rd. via two (2) 14'x4' reinforced concrete box culverts. Construction is underway at Pioneer Hills Development from the crossing at S. Parker Rd. upstream to S. Chambers Rd. This reach is dominated by wetlands and retains a cross-section showing where the floodplain connects to the overbank areas. This section has challenges including severe right bank erosion encroaching on the adjacent multi-family development, a severe channel bend, and a complex outlet structure near S. Chambers Rd. Private water quality and detention ponds are located along the banks for Pioneer Hills and adjacent shopping centers. Upstream of S. Chambers Rd., runoff is conveyed along connected property lines between S. Granby Way and Home Depot.

Upstream of this, a City of Aurora 72" and a parallel City of Centennial 36" storm sewer is aligned for approximately 550 feet at the rear lot lines of adjoining single-family residences. The storm sewers are contained within a 40' easement with 20' on the City of Aurora side and 20' on the City of Centennial side. Upstream of the piped section at

S. Joplin Way, the tributary daylights at Pond RB1-4 which is owned and maintained by SEMSWA. The pond is described in the as-built drawings for The Summit at Piney Creek development and appears to be in good condition, with a boulder-lined trickle channel and other appurtenances. A pre-sedimentation forebay and micro-pool are not present. The as-built drawings indicate a maintenance path was constructed, however it was not visible during the site visit. Upstream from the pond, the tributary is contained in a 72" RCP.

The Joplin watershed combines a 360-acre area in the City of Aurora, a 218- acre area in the City of Centennial, and a 198-acre area in unincorporated Arapahoe County. SEMSWA serves the City of Centennial area and approximately 59 acres of unincorporated Arapahoe County. Subbasin J1 and parts of Subbasins J2, J3, and J4 near S. Parker Rd. are not served by SEMSWA. Challenges along Joplin Tributary include a lack of regional detention or water quality within the lower basin, some streambank erosion, stream maintenance, complex hydraulic conditions with possibly undersized elements, and potentially cumbersome easement issues should the parallel storm system need improvement.

Grove Ranch Tributary (GR) was added to the project scope of work during the Kickoff Meeting due to anticipated redevelopment and it is named in reference to the Grove Family properties within the watershed. It is the smallest watershed studied at 80 acres and less than a mile in basin length. The land use is defined by mixed-use and commercial development in the downstream basin and single-family residential development in the upstream basin. Runoff is conveyed across S. Parker Rd. by a 36" CMP and is conveyed from open channel to Cherry Creek via 36" RCP.

The Grove Ranch watershed is served entirely by SEMSWA, with 77 acres located in the City of Centennial and 4 acres within unincorporated Arapahoe County. Challenges include poorly defined open channel hydraulics in the vicinity of the Fellowship Community Church, pooling wetlands upstream of pipe conveyance to Cherry Creek, and lack of ponds that provide water quality or extended detention.

Valley Club Acres Tributary (VCA) drains a tributary area of approximately 210 acres. The tributary is predominantly contained in storm sewer, with only 600 feet of open channel at the downstream confluence with Cherry Creek. The entire open channel reach is encumbered by the regulatory floodplain of Cherry Creek, as are approximately 1,500 feet of the upstream storm sewer. System capacity will need to be evaluated with this constraint in mind. This tributary is the outfall for part of the Arapahoe Crossing Development and adjoining areas. Lower portions of the storm sewer in and around the Valley Country Club Golf Course transition from 8' x 3' RCBC to 66" RCP and then back to 8' x 3' RCBC.

The VCA area is composed of 110 acres in the City of Centennial, 91 acres in the City of Aurora, and 6 acres in unincorporated Arapahoe County. SEMSWA serves the areas in the City of Centennial and unincorporated Arapahoe County. Challenges include crowns not matching at pipe transitions mentioned in the previous paragraph and potentially undersized piping. If capacity is determined to be insufficient, alternatives will be complicated by multiple utilities including crossing and parallel sanitary lines, water lines, and golf course irrigation.

North Arapahoe Tributary (NA) was added to the project scope of work during the Kickoff Meeting to help address flows to Cherry Creek adjacent to E. Arapahoe Rd. Runoff from North Arapahoe watershed east of S. Buckley Rd. is conveyed in storm sewer and through a SEMSWA owned and maintained regional detention pond referred to herein as the North Arapahoe (NA) Pond. This pond is also referred to as Pond E by SEMSWA and is located in Tract A of Filing No. 9 for The Farm in Arapahoe County (P.R. Fletcher & Associates, Inc., 2000). Further downstream, runoff is conveyed under S. Parker Rd. in a 48" concrete pipe before discharging directly to Cherry Creek. The upper-most part of this watershed is located south of E. Arapahoe Rd. in the Town of Foxfield and drains to a downstream manhole that joins outflow from NA pond.

The North Arapahoe watershed combines a 372-acre area, 206 acres of which are served by SEMSWA, 114 acres by the Town of Foxfield, and 51 acres by the City of Aurora. Challenges include NA Pond hydraulics due to discrepancies between LiDAR contours and as-built records, complex hydraulics at the S. Parker and E. Arapahoe Rd. interchange and upstream, and potentially undersized conveyance in downstream areas.

South Arapahoe Tributary (SA) was also added to the project scope of work during the Kickoff Meeting to help address flows to Cherry Creek along E. Arapahoe Rd. Runoff is discharged by a 12' x 6' RCBC that was designed to convey 645 cfs from the previously planned Southeast Regional Detention Basin. Research indicates that the Foxfield Outfall from the E. Arapahoe/S. Parker Interchange Water Quality Pond became UDFCD maintenance eligible in January 2014. However, the downstream detention component of this pond is not publicly owned and maintained, or maintenance eligible, and so it is not included in project hydrology.

The SA watershed combines a 317-acre area in the Town of Foxfield, a 70-acre area in the City of Aurora, a 4.5-acre area in unincorporated Arapahoe County, and a 4-acre area in the City of Centennial. SEMSWA provides service to the City of Centennial area and 3 acres of unincorporated Arapahoe County. A small area near S. Parker Rd. in Subbasin SA2, an area of 1.5 acres, is not currently served by SEMSWA. Challenges include complex hydraulics at the S. Parker and E. Arapahoe interchange, WQ detention only and no regional detention, and potential bank instability in the downstream channel to the outfall.

Chenango Tributary (C) is the largest watershed and conveys runoff from 920 acres to Cherry Creek through the Cherry Creek Valley Ecological Park from the Chenango Development, which is a single-family large lot rural development that is fully built out. There are direct outfalls from the Landing at Cherry Creek development with no apparent water quality or detention. Red Hawk Ridge Elementary School provides some level of stormwater management. Regional detention and water quality do not exist along Chenango Tributary. Both developments discharge along a grouted sloping boulder drop structure and moderate infrastructure is located along portions of this tributary, predominantly in the downstream reaches. A sloped/tapered throat 10' x 5' RCBC crosses Cherokee Trail, and upstream a CDOT 3-barrel 12' x 6' RCBC with baffle chute drop structure crosses S. Parker Rd. The condition of these structures is good.

Upstream from S. Parker Rd., drainage infrastructure is more rural in design. At E. Hinsdale Way, a 54" CMP has incorporated a gated section at the outlet, presumably to function as fencing for the private property through which it passes. Seven (7) additional public road crossings and six (6) private drive crossings, some of which are bridges, are located upstream to the basin headwaters.

The Chenango watershed combines a 450-acre area in the City of Centennial, a 376-acre area in the Town of Foxfield, and a 90-acre area in unincorporated Arapahoe County. SEMSWA serves the areas in the City of Centennial and unincorporated Arapahoe County. Noted challenges that are present in this basin include no regional detention or water quality, a poorly defined or potentially undersized conveyance, a multi-split flow at the intersection of S. Richfield St. and E. Hinsdale Ave.; significant head cutting at S. Yampa St. with exposed twin 30" CMP and floating inverts due to erosion; widespread wetlands; at least one (1) manmade impoundment with rusted and partially buried CMP; bank instability in the upper reaches; and numerous roadside ditches with timber grade control. The main tributary measures more than two (2) miles in length with multiple left and right bank tributaries that measure another 1.5 miles in length.

Tagawa Tributary (T) was added to the project scope of work during the Kickoff Meeting as a direct flow area (DFA) to help address flows across S. Parker Rd. near Chenango and Kragelund Tributaries and was added as the eleventh (11th) Tributary after removal of the remaining DFAs. Tagawa was named as a part of this study and has an area of approximately 107 acres. The tributary outfalls directly to Cherry Creek and is located to the south of Chenango Tributary and north of Kragelund Tributary. The crossing at S. Parker Rd. is located on the south side of E. Broncos Pkwy. The SEMSWA GIS data for stormwater mains indicates that the crossing is two (2) 42" pipes: one (1) CMP and one (1) RCP and both are noted to be in good condition. These pipes are also shown in the 1999 OSP (WRC Engineering, Inc., 1999). The area modeled is the portion east of S. Parker Rd. as this area will flow through the crossing at S. Parker Rd. and downstream 48" RCP piping to the Cherry Creek outfall.

The Tagawa watershed is entirely contained in the City of Centennial, which is served by SEMSWA. Challenges for Tagawa Tributary include poorly defined hydraulics upstream of S. Parker Rd., potentially undersized piping west of S. Parker Rd., and lack of ponds that provide water quality or extended detention.

Kragelund Tributary (K) conveys runoff from approximately 610 acres of mostly undeveloped land and provides the best opportunity for floodplain preservation. Before the Comment Review meeting Kragelund was referred to as South Unnamed Tributary, as described in the meeting minutes. Future development is anticipated from the headwaters near E-470 and King's Point, through privately owned property currently managed by the Vermillion Creek Metropolitan District, to the confluence with Cherry Creek within the PJCOS. There is currently no drainage easement across this property. Minimal infrastructure is present with the most prominent feature being a CDOT 22' x 8' RCBC crossing of S. Parker Rd. upstream of which, possibilities exist for regional detention and water quality. For approximately 2,800 feet upstream of S. Parker Rd., the floodplain is wide with no defined main channel. At this point, moderate channel definition begins, and it splits into a right stem (2,600 feet long) that drains southern portions of the existing Chenango development, and a left stem that proceeds towards the headwaters where it intersects a second right bank tributary (3,200 feet long). The majority of Kragelund Tributary is devoid of wetlands.

Kragelund watershed combines a 343-acre area in the City of Aurora, a 259 acre-area in the City of Centennial, and 7-acre area in unincorporated Arapahoe County. SEMSWA serves the areas in the City of Centennial and unincorporated Arapahoe County. Challenges for Kragelund Tributary include upstream erosion near E-470, lack of ponds that provide water quality or extended detention, and undefined conveyance to Cherry Creek.

The **17 Mile Tributary (17)** was added to the project scope of work during the Kickoff Meeting to help address flows across the 17 Mile House Farm Park. It is the most southern tributary of this study and is located just north of the Arapahoe County / Douglas County border. This poorly defined tributary drains approximately 145 acres, and is bisected by S. Parker Rd. through which, two (2) 48" RCP conveys runoff. This watershed is also largely undeveloped upstream of S. Parker Rd. but is expected to be fully built-out following development of King's Point.

17 Mile watershed combines a 97-acre area in the City of Aurora, a 17 acre-area in the City of Centennial, and 15-acre area in unincorporated Arapahoe County. SEMSWA serves the areas in the City of Centennial and unincorporated Arapahoe County. Challenges include poorly defined hydraulics from S. Parker Rd. to Cherry Creek and lack of ponds that provide water quality or extended detention.

2.3 LAND USE

Due to the built-out nature of the studied basins, future land use hydrology is considered equal to existing for all basins except two (2): 17 Mile and Kragelund Tributary, where large swaths of undeveloped area still exist. As a result, existing conditions land use and hydrology in this study were developed for 17 and K only.

Most of the existing development in the Project Area consists of residential land use. Small pockets of office, commercial, and industrial developments are also present, primarily along the major local thoroughfares such as S. Parker Rd., E. Smoky Hill Rd., and E. Arapahoe Rd. Large portions of Little Raven Creek, Suhaka Creek and Joplin Tributary basins are located within the Cherry Creek State Park. The proposed King's Point Subdivision is anticipated to build out the remaining undeveloped area within the 17 Mile and Kragelund Tributary basins east of S. Parker Rd. sometime in the near future.

Land use for existing and future conditions was evaluated based on several pieces of data, referenced in Table 1-2. At the start of the project, Arapahoe County and SEMSWA provided future land use GIS data for areas of unincorporated Arapahoe County from the 2018 Comprehensive Plan and PDF maps of the Centennial NEXT Plan. Other data from the County's GIS portal are used to identify land use, including zoning, parks and open space, parcels, and lakes. Additional zoning data from the City of Aurora, the City of Centennial, and Douglas County is used to categorize land use in these areas. The spatial location of the two (2) modeled regional detention pond, Pond RB1-4 in Joplin Watershed and NA Pond (Pond E) in North Arapahoe Watershed, are from SEMSWA's detention pond data. And finally, the extents for S. Parker Rd. and E. Arapahoe Rd. were digitized by hand to include street imperviousness for these major roads. Figure B-2 depicts the sources used to develop land use by location, as well as original Arapahoe County land use designations and original City of Aurora Zoning data.

To determine appropriate percent imperviousness values, the collected land use categories were converted to UDFCD land use types and corresponding imperviousness values using *Table 6-3 Recommended Percentage Imperviousness Values* in the UDFCD Criteria Manual Volume 1, which are included in **Table 2-4** for reference (Urban Drainage and Flood Control District, 2016). Composite imperviousness values calculated for each subwatershed are listed in **Table B-2** in Appendix B for the existing and future conditions hydrology and maps showing the existing and future land use are shown in Figure B-1 as the *Existing Land Use Map* and the *Future Land Use Map* layers.

Table 2-4. Land Use Categories and Imperviousness

Land Use	Imperviousness (%)
Apartments	75%
Business, Suburban	75%
Industrial, light	80%
Open Water	100%
Parks, cemeteries	10%
SF, 0.25 acres or less	45%
SF, 0.25-0.75 acres	30%
SF, 0.75-2.5 acres	20%
SF, 2.5 acres or larger	12%
Schools	55%
Streets	100%
Undeveloped Areas	2%

Imperviousness data that covers areas such as sidewalks, roofs, and roads was also made available for the City of Aurora and SEMSWA service area as a check for land use correlated imperviousness values. It was decided between stakeholders that imperviousness values from this data instead of land use data may be used during the alternatives analysis for select locations if UDFCD agrees. Also, it may be noted that land use data from the National Land Coverage Database (NLCD) was used early in the study to verify the results using UDFCD land use and values were similar.

While determining land use and corresponding imperviousness values for the studied watersheds, several specific areas were identified and discussed by stakeholders to agree on some assumptions. First, S. Parker Rd. is planned to be expanded to six (6) lanes in the future. This change is not considered as part of this study since S. Parker Rd., in addition to lakes, detention basins, and E. Arapahoe Rd., is included as a 100% imperviousness land use area and this is a conservative assumption. Land use areas are typically assumed to include adjacent roads and minor water bodies or anomalies. Second, development of the developable portion of 17 Mile Farm House is neglected since this area is only 1.8 acres in area and the parcel has a conservative existing land use of single-family 2.5 acres or larger, even though most of the area is undeveloped.

2.4 REACH DESCRIPTION - N/A

This section will be further developed with subsequent submittals of the report. At this time, existing structures are noted that impact hydraulic routing. At each roadway crossing, a detailed survey of existing conveyance structures

within the Project Area was provided by UDFCD. Included with the survey were site photos, sketches of the entrance and outlet, detailed characteristics of the culvert's shape, size, length, inverts, overtopping elevations, and headwall/wingwall end treatments (if applicable). Table 2-5 summarizes the inventory of the existing infrastructure.

2.5 FLOOD HISTORY

This Master Plan lies within the FEMA Flood Insurance Rate Maps for Arapahoe County, Map Number 08005C, map panels 0476L, 0477L, 0181K, 0481L, and 0484L revised February 17, 2017, and Map Number 08005C, map panel 0483K revised December 17, 2010. Based on the FIRM panels, the floodplain is not mapped for any of the project tributaries. The project sponsors did not provide any evidence of noteworthy flooding, nor was statistical or anecdotal flood history available during the preparation of this Master Plan.

2.6 ENVIRONMENTAL ASSESSMENT – N/A

Table 2-5. Inventory of Existing Structures

Tributary	Description	Road Crossing / Type		
	54" RCP and 48" x 66" Box Culvert	E. Belleview Ave.		
Little Raven Creek (LR)	Wooden pedestrian bridge	Cherry Creek State Park		
	Culvert Crossings	Lakeview Rd., pedestrian trails and bike path		
Suhaka Creek (S)	(2x) 60" RCP	Cherry Creek Dr.		
	(2x) 14'x4' Box Culverts	S. Parker Rd.		
	Elevated Pipe Crossing	S. Parker Rd.		
Joplin Tributary (J)	RB1 Pond 4 / Powers Pond	S. Joplin Way and S. Chambers Rd.		
	Drop Structures	S. Chambers Rd. near Bed Bath and Beyond		
	Culvert Crossings	Dirt pedestrian trail		
Grove Ranch Tributary (GR)	None			
Valley Club Acres (VCA) Tributary	Inlet Structure	S. Helena St.		
North Arapahoe Tributary (NA)	None			
	144" X 72" Box Culvert	Along E. Arapahoe Rd. from outfall to S. Parker Rd.		
South Arapahoe Tributary (SA)	WQ Pond and Outlet Structure	S. Lewiston St.		
,	Culvert Crossings	Across and/or along Richfield St., Pitkin St., Buckley Rd., S. Parker Rd., and private roads.		
	4' x 2' RC Box	Cherry Creek Trail		
	Grouted boulder drop structures	Red Hawk Elementary School		
Chenango Tributary (C)	10' x 5' Box Culvert	Cherokee Trail		
	(3x) 132" x 172" Box Culverts	S. Parker Rd.		
	Culvert Crossings	Across and/or along Yampa St., Hinsdale Ave., Telluride Ct., Richfield St., and private drives		
Kragelund Tributary (K)	22' x 8' Box Culvert	Crossing S. Parker Rd. at Kragelund Acres		
17 A4:L- /17)	(2x) 48" RCP	S. Parker Rd.		
17 Mile (17)	(2x) 48" RCP	Driveway at 17 Mile House		

SECTION 3. HYDROLOGIC ANALYSIS

3.1 OVERVIEW

The hydrologic analysis presented herein was developed independent of the 1999 OSP and no existing model input files were recreated or available for use. Basins were delineated using one-foot LiDAR data described in Section 1.4 MAPPING AND SURVEYS. Shapefiles for notable infrastructure such as road networks and storm conveyance systems were also used to logically subdivide major basins at points of interest. The analysis identifies drainage patterns and runoff characteristics for the following nine (9) storm events: the 1-, 2-, 5-, 10-, 25-, 50-, 100-, 500-year and water quality (WQ) storm events. Land use was analyzed for existing and future conditions and the resultant hydrology is the foundation for the subsequent evaluation of drainage facilities and the systemwide level of service.

The Colorado Urban Hydrograph Procedure program (CUHP) 2016 version 2.0.0 was used to develop runoff hydrographs which were then routed using the EPA Storm Water Management Model (EPA SWMM) version 5.1 to account for the effects of storm sewer, stream reaches, and detention on lag and time to peak. Input data for CUHP is subwatershed specific and includes rainfall depth, watershed area, distance to centroid, length of flow path, slope, composite imperviousness, and depression storage and soil infiltration rates. This data was obtained through GIS analysis and project research to accurately model individual sub-basin conditions. Values are in accordance with recommendations provided by the UDFCD and CUHP manuals.

The baseline project hydrology for this Master Plan utilizes the future land use conditions model and the subsequent sections provide a summary of the information utilized to quantify the peak runoff values. The summary includes design rainfall, sub-watershed characteristics, hydrograph routing and the results of the analysis.

3.2 DESIGN RAINFALL

Design rainfall depths for the for the 1-, 2-, 5-, 10-, 25-, 50-, 100- and 500-year storm events were obtained from the National Oceanic and Atmospheric Administration (NOAA) Atlas 14 (Volume 8, Version 2) Point Precipitation Frequency Estimates. Specifically, the 1-hour and 6-hour recurrence interval rainfall depths were utilized as direct inputs into the CUHP rain gage data. The WQ event is pre-defined, according to the CUHP manual, to be a 0.6 in. rainfall event for the 1-hour duration recurrence interval. None of the project basins exceed ten square miles and therefore no area adjustments to rainfall were required. This study is analyzing the WQ event and the 1-year storm event as part of a UDFCD effort to assess WQ and bankfull conditions in the alternatives phase. Table 3-1 summarizes

the 1-hour and 6-hour rainfall depths, and the rainfall distributions developed by CUHP are in Appendix B as Table B-1.

Table 3-1. Point Rainfall

	Rainfall Depth (in)			
Recurrence Interval	1-Hour	6-Hour		
1	0.721	1.19		
2	0.868	1.39		
5	1.13	1.77		
10	1.37	2.13		
25	1.73	2.67		
50	2.03	3.13		
100	2.36	3.63		
500	3.21	4.96		

3.3 SUBWATERSHED CHARACTERISTICS

3.3.1 SUBWATERSHED DELINEATION

The eleven (11) tributary basins are comprised of forty-four (44) subwatersheds. Each is shown on the subwatershed layer with the Baseline Hydrology Map in Figure B-1. The sub-basin sizes range from 21.8 to 140.0 acres, with the average value being 99.0 acres. The major basin boundary for each tributary was verified by evaluating LiDAR data, stormwater infrastructure, roadways, and field reconnaissance. Additional review of approved Drainage Reports, Construction Drawings, and As-Built Drawings within the Project Area further informed the development of the models. Where there is overlap, the basin delineation is reasonably comparable to the 1999 OSP. However, the subbasin naming convention is fully independent and conforms to the tributary in which they are located, as follows:

Little Raven Creek: LR1 – LR3

Suhaka Creek: S1 – S3

Joplin Tributary: J1 – J8

Grove Ranch Tributary: GR1

Valley Club Acres Tributary: VCA1 – VCA2

North Arapahoe Tributary: NA1 – NA4

South Arapahoe Tributary: SA1 – SA4

Chenango Tributary: C1 – C9

Kragelund Tributary: K1 – K7

17 Mile Tributary: 17A – 17B

Reference the Subwatershed Boundaries Map layer of the Baseline Hydrology Map in Figure B-1 for the locations and

delineations of the CUHP sub-basins.

Numerous physical characteristics associated with each subwatershed are used to produce a storm runoff hydrograph

for each subwatershed in CUHP. The hydrograph outputs from CUHP are saved in a tabular format to a text file that

is then used as the Inflow file for SWMM. These hydrographs represent the overland flow for each subwatershed

which are represented as nodes in SWMM. The CUHP input parameters that define the hydrograph for each

subwatershed include the following and are further detailed in Table B-2 located in Appendix B.

Drainage area (acres)

Length and Distance to Centroid (ft)

Watershed Slope (ft/ft)

Composite Imperviousness (%)

Horton's Soil Infiltration Rates

Depression Losses/Retention Storage Values

3.3.2 WATERSHED IMPERVIOUSNESS

Watershed imperviousness was determined using land use maps, zoning data, and aerial imagery. Most of the

tributary watersheds are almost fully developed; therefore, the watershed imperviousness developed for nine (9) of

the basins is considered future conditions (i.e. existing conditions = future conditions). The weighted average future

percent imperviousness for all the studied basins is 33%. Existing watershed imperviousness was evaluated for the

17 Mile Tributary and the Kragelund Tributary only, since these basins are largely undeveloped at the time of this study. The weighted average existing percent imperviousness for each basin is 8% and 14%, respectively. King's Point,

a planned development in the area, is anticipated to build out these basins east of S. Parker Rd. in the near future; the

associated increase in imperviousness to 36% and 35% is reflected in the future conditions hydrology. For further

description regarding how land use was used to determine subwatershed imperviousness, refer to Section 2.2 LAND

USE.

3.3.3 NRCS SOIL INFORMATION

Soil conditions for each subwatershed were used as CUHP inputs to determine the infiltration rates based on Horton's

Equation. Data for soils was collected from the National Resources Conservation Service (NRCS) Web Soil Survey

(USDA, 2018) and corresponding hydrology soil groups (HSG) were determined for each soil type. The four (4) HSG

types are A, B, C and D, with Type A having the highest infiltration rate and thus lowest runoff potential, and Type D

have very low infiltration rates and high runoff potential. Soils in the overall Project Area are classified as: 11.8%

Type A, 44.9% Type B, 20.6% Type C, and 22.7% Type D. HSG types and corresponding Horton values, including initial

and final infiltration rates (in/hr) and decay coefficients (s⁻¹), were taken from Table 6-7 Recommended Horton's

equation parameters in the UDFCD Criteria Manual Volume 1. To determine composite Horton's parameters for each

subcatchment for CUHP determination of infiltration rates, an area-weighted average was used. Refer to Table B-2 in

Appendix B for a summary of the resultant Horton's parameters and the Soils Map layer in Figure B-1 for a map of the

hydrologic soil groups. For Baseline Hydrographs, refer to Figure B-4 in Appendix B.

3.4 DETENTION

Two (2) regional detention facilities are included in the baseline hydrology EPA SWMM model: Pond RB1-4 on Joplin

Tributary and North Arapahoe (NA) Pond on the North Arapahoe Tributary. North Arapahoe Pond serves the

developments from Farm Filing No. 7, 8 & 9 where it is referred to as "Pond E". Both are publicly-owned and UDFCD

maintenance-eligible and are herein referred to as Pond RB1-4 and NA Pond. Detention rating curves for both were

sourced from engineering reports, record drawings, and survey data that are on file with the project sponsors.

Pond RB1-4, which is owned and maintained by SEMSWA, is an on-line pond located on Joplin Tributary between

E. Crestline Ave. and S. Joplin Way. The detention rating curves were developed from a stage-storage-discharge table

located in the as-built drawings prepared for East Cherry Creek Valley (ECCV) Water and Sanitation District on April

28, 1994 (Muller Engineering Co., Inc., 1994). The as-built data is assumed to be correct and supersedes data

presented in the approved drainage report "Cherry Creek Basin RB1 Drainage Improvements" dated November 1989

(Muller Engineering Co., Inc., 1989). The as-built stage-storage curve was back-checked using 2014 LiDAR one-foot

contours; the final stage-storage curve incorporates additional data points from the 2014 LiDAR and the same total

storage volume as the 1994 as-builts. Refer to Table B-3 in Appendix B for the Pond RB1-4 stage-storage-discharge

curves.

3-2

NA Pond, also owned and maintained by SEMSWA, is not located on the main stem of the NA Tributary, however, sits on-line a tributary of North Arapahoe and serves Filings No. 7, 8 & 9 of the Farm at Arapahoe County. Detention rating curves were originally obtained from as-built drawings prepared on May 4, 2000 (Aztec Consultants & P.R. Fletcher & Associates, Inc., 2000) and the Phase III Drainage Erosion & Sedimentation Control Report dated 15, 1999 (P.R. Fletcher & Associates, Inc., 1999). However, it was noted that the 2014 LiDAR indicated that the total storage volume quoted in the as-builts was larger than physically feasible. Therefore, new stage-storage-discharge curves were calculated using survey data collected by the UDFCD in February 2019. The new storage volume was calculated from the survey using the average-end area method and totaled 4.9 acre-feet as compared to the 2000/1999 volume of 11.1 acre-feet, at an elevation of 5772 feet (approximate top of berm). The UD-Detention spreadsheet (Version 3.07, Released February 2017) was used to estimate a new stage-discharge curve according to the surveyed outlet configuration. See Table B-3 in Appendix B for the NA Pond stage-storage-discharge curves and calculations.

Neither of the two (2) detention facilities was designed to detain the 500-year flow; therefore, additional points were added in the EPA SWMM model to both the stage-storage and stage-discharge curves, which minimally modifies the total storage volume but allows the 500-year maximum flows to pass without flooding model nodes.

3.5 HYDROGRAPH ROUTING

Hydrograph routing for each subwatershed through the Cherry Creek Minor Tributary basins was modeled using EPA SWMM 5.1 and the Kinematic Wave routing method. The routing scheme described in this section applies to both existing and future conditions, as no changes to hydrologic routing is anticipated. Refer to the *Baseline Hydrology SWMM Routing Map* layer in **Figure B-1** and **Figure B-3** SWMM Routing Schematic in **Appendix B** for a visual representation of the routing scheme. Summarized input and output files from EPA SWMM are included in **Table B-5** and **Table B-6**.

Each subwatershed is represented in EPA SWMM by a junction node with an invert elevation reflecting the lowest point in the subwatershed. Overland flow within each basin is routed via a conduit link labeled "SUB_OF" and contains no geometry or physical information additional to that reflected in the hydrograph output produced by CUHP. Design points are represented by junction nodes and contain the invert elevation found at that location, and these elevations dictate the slope of any attached link that represents open channel, stormwater sewer, or overflow conveyance elements. These links are labeled "SUB_OC", "SUB_SS", and "SUB_OVF", respectively.

Channel characteristics and the associated SWMM routing elements were estimated using topographic contours, aerial photography, GIS and plan data, and site visits. Stormwater infrastructure shapefiles from SEMSWA and the City of Aurora were the primary source of information for conduit shape, maximum depth, length, and material. For conduit lengths that included several pipe sizes, an average size was selected for the SWMM link. Lengths were estimated using ArcGIS in the *NAD 83 Colorado State Plane, Central Zone* projected coordinate system. Most stormwater sewer conveyance elements were reinforced concrete, which corresponds to a Manning's roughness coefficient of 0.013 and translates to a value of 0.016 for CUHP-connected models.

To obtain cross-section geometry for open channels, approximate sections were drawn using GeoHECRAS version 2.1.0.17569, which utilizes the US Army Corp HEC-RAS analysis engine version 5.0.3. Using this program and 2014 LiDAR elevation data, a total of six (6) different 4-point channel geometries were established based on open channels studied in subwatersheds LR2, J3, SA2, C4, K4, and 17A. Each open channel conduit modeled corresponds to one of these geometries depending on similar geometry. Manning's roughness coefficients were estimated for each subwatershed using *Equation 6-8* from the UDFCD Criteria Manual Volume 1. This equation suggests that Manning's roughness coefficient for open channels is directly proportional to the slope of the channel and inversely proportional to the hydraulic radius. FlowMaster V8i was used iteratively at various flow rates (cfs) to solve for the hydraulic radius and Manning's roughness coefficient for five (5) slope cases: 1%, 1.5%, 2%, 2.5%, and 3%. Key tables were developed for each channel geometry and these tables were used for each conduit link to select a coefficient appropriate for the slope and channel shape. It should be noted that this determination was made using the original 8-point channel geometry determined for the six (6) shapes; however, the geometries used for the SWMM conduits were reduced to four (4) points to allow for hydrograph convergence. And finally, the open channel lengths and alignments were estimated using ArcGIS and 1-foot LiDAR-sourced contours.

To eliminate nodal flooding during the 500-year storm, nine (9) divider nodes were included at the following junctions: Lewiston_J, Laredo_J, Shalom_J, Fair_Place_VCA, Parker_T1, Waco_NA, Buckley_NA1, out_RB1-4_pond, and Parker_NA. These nodes were assigned cutoff flow values just before surcharging and direct overflow to a secondary dummy link created to convey the entire flow downstream.

Finally, detention ponds were modeled using storage unit nodes with downstream outlet links. Each storage node and outlet link used a tabular stage-storage curve and stage-discharge curve as described in Section 3.4 DETENTION.

3.6 PREVIOUS STUDIES

Two (2) sources of previous hydrologic analysis are available for the Cherry Creek Minor Tributaries to-date. The first is the 1999 Cherry Creek Corridor Reservoir to County Line Outfall Systems Plan (WRC Engineering, Inc., 1999). This is a regional study that provides a limited number of common design points for reference and comparison. The second source is individual site drainage reports. Drainage reports were referenced only where necessary for the modeling of regional detention ponds, as discussed in Section 3.4 DETENTION.

3.7 RESULTS OF ANALYSIS

Peak flow rates for the existing and future land use conditions models were established at design points after incorporating the rainfall data, hydrologic characteristics, and drainage conveyance parameters within EPA SWMM. The basin-wide peak flow rate results at each of the design points along the stream corridor for the WQ, 1-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year storm events are presented in **Appendix B** with key points shown in **Table 3-2**. As noted earlier, only Kragelund Tributary and 17 Mile Tributary have existing conditions hydrology.

A summarized input and output file from the EPA SWMM version 5.1 model are included in **Appendix B**. The summarized input and output files provide the detailed information regarding subwatershed hydrologic input and the resulting hydrograph routing and peak flows.

Table 3-2. Peak Flows at Key Design Points

Desir	Location	Existing (cfs)			Future (cfs)		
Basin		Q ₅	Q ₂₅	Q ₁₀₀	Q ₅	Q ₂₅	Q ₁₀₀
Little Davier Creek (LD)	Outfall to Reservoir	-	-	-	72	253	454
Little Raven Creek (LR)	E. Belleview Ave.	-	-	-	86	242	404
Suhaka Creek (S)	Cottonwood Creek Confluence	-	-	-	65	238	423
	Outfall to Cherry Creek	-	-	-	173	348	613
Laulin Teilentaur (1)	S. Parker Rd.	-	-	-	182	331	535
Joplin Tributary (J)	RB1-4 Pond Outflow	-	-	-	110	205	353
	RB1-4 Pond Inflow	-	-	-	146	345	570
Grove Ranch Tributary (GR)	Outfall to Cherry Creek	-	-	-	43	96	150
Valley Club Acres Tributary (VCA)	Outfall to Cherry Creek	-	-	-	83	211	349
AL	Outfall to Cherry Creek	-	-	-	82	229	476
North Arapahoe Tributary (NA)	S. Buckley Rd.	-	-	-	45	150	325
	Outfall to Cherry Creek	-	-	-	66	229	426
South Arapahoe Tributary (SA)	S. Parker Rd.	-	-	-	36	163	318
Change Tributen (C)	Outfall to Cherry Creek	-	-	-	112	478	942
Chenango Tributary (C)	S. Parker Rd.	-	-	-	96	436	857
Tagawa Tributary (T)	Outfall to Cherry Creek	-	-	-	14	52	105
	Outfall to Cherry Creek	49	308	626	151	478	859
Kragelund Tributary (K)	S. Parker Rd.	50	307	615	149	472	839
	Tributary Confluence	36	181	334	121	309	505
17 Mile Tributer (17)	Outfall to Cherry Creek	8	84	169	52	155	267
17 Mile Tributary (17)	S. Parker Rd.	6	70	141	47	135	229

Table 3-4 compares the results of the 1999 OSP with the results of this Master Plan, where applicable, for future conditions hydrology. The tributaries have only a handful of comparable points and not all of the tributaries were studied in the 1999 OSP (WRC Engineering, Inc., 1999). Several variables in this Master Plan differ from the 1999 OSP. Each of these variables affected the hydrology of the tributary basins to a different degree and therefore no overall trend exists of the change in peak flows. However, a unit discharge comparison, as shown in **Table 3-4**, indicates that both studies resulted in similar volumes of runoff per acre.

Notable items that differ between the 1999 OSP and this Master Plan are summarized below.

- Little Raven Creek, Suhaka Creek, and Joplin Tributary were not studied in the 1999 OSP.
- Compared to the 1999 OSP, the rainfall depths used in the current MDP are lower, except for the 1-year storm event. The 100-year one-hour rainfall depth used in the 1999 OSP was 2.67 inches, as opposed to 2.36 inches used in this study.

	1-Hour Point Rainfall Depth (in)					
Recurrence Interval	1999 OSP 2019 MDP					
1	0.4	0.721				
2	0.97	0.868				
5	1.38	1.13				
10	1.65	1.37				
50	2.32	2.03				
100	2.67	2.36				

Table 3-3. Rainfall Depths, 1999 OSP vs. MDP

- Residential land use east of S. Parker Rd. between E. Arapahoe Rd. and the southern boundary of the County was estimated as 5% and 8% vs. 20% in this Master Plan. This impacts most of the Chenango Tributary, Tagawa Tributary and South Arapahoe Tributary basins. Additionally, the 1999 OSP estimated the future King's Point development would increase existing imperviousness to 50% as opposed to the single-family land uses of 30% and 45% used in this study.
- With the benefit of a more refined data set, the variables used in this study's hydrologic analysis lead to a
 more detailed and comprehensive basin-wide examination. This study prepared a model with more detailed
 routing by identifying storm sewer drainage versus overland flow. Additionally, Manning's roughness

coefficients were estimated using *Equation 6-8* from the UDFCD Criteria Manual Volume 1, which resulted in overall higher values than those used in the 1999 OSP, but values that are more appropriate for hydrologic routing. Both of these factors result in differences in the timing of the storm hydrographs and, ultimately, the calculated peak flows.

Table 3-4. 100-year Peak Flows, 1999 OSP vs. Current MDP

Dacin	Design Point		Future Q ₁₀₀ (cfs)		Basin Area (acres)		Unit Discharge (cfs/acre)		Notes
Basin	1999 OSP	2019 MDP	1999 OSP	2019 MDP	1999 OSP	2019 MDP	1999 OSP	2019 MDP	Notes
Valley Club Acres (VCA)	164	Fair_Place_VCA	486	349	262.2	207	1.85	1.69	
North Arapahoe (NA)	n/a	Buckley_NA1	n/a	325	n/a	272	n/a	1.19	OSP combined
South Arapahoe (SA)	126	Parker_SA	599	318	603.2	326	0.99	0.98	North and South Arapahoe basins
Chenango (C)	112	Bridle_Trail_C	533	412	308.6	321	1.73	1.28	
Kragelund Tributary (K)	102	Confluence_K	453	505*	300.2	257	1.51	1.96*	*Existing is 334 cfs @ 1.30 cfs/acre
17 Mile (17)	108	Parker_17	171	229*	125.6	124	1.36	1.85*	*Existing is 141 cfs @ 1.14 cfs/acre

The following text notes the level of compatibility for comparison between design nodes found in the 1999 OSP versus design nodes used in this study. Unit discharges have been included in **Table 3-4** as an alternate form of comparison given the many variables that vary between this Master Plan and the 1999 OSP.

• The stakeholder interests along Grove Ranch Tributary are to address redevelopment within the lower reaches of the basin, identify the conveyance path, and identify the outfall to Cherry Creek. Therefore, the Grove Ranch Tributary is delineated as a single sub-basin downstream of S. Parker Rd. with its outfall located at Cherry Creek. The 1999 OSP does not provide adequate delineation downstream of S. Parker Rd. Its most useful design point is upstream of S. Parker Rd. at DP109, where the 100-year future conditions flow is reported as 77 cfs. Therefore, no comparison is made.

- Valley Club Acres is compared at design point 164, which is slightly upstream from the confluence with Cherry Creek. The next downstream design point is within the main stem of Cherry Creek and therefore, includes other upstream basins. Due to basin transfers, basin 57 that was previously modeled as part of North Arapahoe (NA) Tributary is modeled with Valley Club Acres Tributary in this study. A comparison is made, but it is not a direct correlation.
- The Chenango Tributary and Kragelund Tributary have common design points at the respective basin outfalls to Cherry Creek, as identified in Table 3-4.
- The 17 Mile Tributary is modeled with the 1999 OSP. However, a review of Figure A-6.2 in that report indicates that it was not routed to a design point. OSP basin 8 is upstream of S. Parker Rd. and therefore, it is assumed to be comparable to the design point listed in Table 3-4.

SECTION 4. REFERENCES

- Aztec Consultants & P.R. Fletcher & Associates, Inc. (2000). *The Farm at Arapahoe County Filing No. 7*. The Farm Development Company & Arapahoe 114, LLC.
- Muller Engineering Co., Inc. (1989). *Cherry Creek Basin RB1 Drainage Improvements Final Design Report*. ECCV Water and Sanitation District.
- Muller Engineering Co., Inc. (1994). Basin RB1-Pond 4 Drainage Improvements. ECCV Water and Sanitation District.
- P.R. Fletcher & Associates, Inc. (1999). *Phase III Drainage Report Erosion & Sedimentation Control Report for The*Farm at Arapahoe County Filings 7 & 8. The Farm Development Company & Arapahoe 114, LLC.
- P.R. Fletcher & Associates, Inc. (2000). The Farm at Arapahoe County Filing No. 9.
- Urban Drainage and Flood Control District. (2016). Urban Storm Drainage Criteria Manual Volume 1.
- USDA. (2018). *Custom Soil Resource Report for Arapahoe and Douglas County Area, Colorado*. Retrieved from NRCS Web Soil Survey: https://websoilsurvey.sc.egov.usda.gov
- WRC Engineering, Inc. (1999). *Cherry Creek Corridor Reservoir to County Line Outfall Systems*. Urban Drainage and Flood Control District.

APPENDIX A PROJECT CORRESPONDENCE

8100 E. Maplewood Ave. #150 Greenwood Village, Colorado 80111

> Phone: 303.368.5601 Fax: 303.368.5603

KICKOFF MEETING MINUTES

DATE/TIME: SEPTEMBER 10, 2018 @ 10:30 A.M.

LOCATION: UDFCD OFFICE

PROJECT: CHERRY CREEK TRIBUTARIES MDP & FHAD

ATTENDEES:

Shea Thomas - UDFCD

Richard Borchardt – UDFCD

Stacey Thompson – SEMSWA

Cathleen Valencia – Arapahoe County (Engineering)

Roger Harvey – Arapahoe County (Open Space)

Craig Perl – City of Aurora

Jonathan Villines – City of Aurora

Allie Beikmann – J3 Engineering

Ken Cecil – J3 Engineering

PURPOSE:

- 1. Project stakeholders and design team introductions
- 2. Review stakeholder known issues and project goals
- 3. Review project opportunities
- 4. Review project Scope & Schedule
- 5. Name the Unnamed Tributaries

DISCUSSION ITEMS:

- 1. Shea provided an overview of the revised Master Planning Process, which separates the project into four distinct phases beginning with Baseline Hydrology, then FHAD for the identification of flood risks, then alternatives analysis and concluding with conceptual design.
- 2. The three named tributaries were previously studied with the prior 1999 OSP. The unnamed tributaries have not been previously studied.

Page 1 of 6 Page 2 of 6

Cherry Creek Tributaries MDP & FHAD Kickoff Meeting Minutes

- 3. Additional tributaries that were not identified in the RFP were reviewed and added. These include:
 - a. Tributary just west of northerly unnamed tributary
 - b. Tributary just south of Arapahoe Road, with apparent Foxfield Drainage Basin.
 - c. Note: Three tributaries just east of northerly tributary (Part of Cherry Creek Vistas) were noted as being part of Cottonwood Creek basin and therefore, not to be included with this study.
 - d. If adding additional reaches, UDFCD may amend the contract on a dollar/foot of additional reach length.
- 4. SEMSWA is supportive of adding the 17-Mile House tributary, the Arapahoe/Parker interchange tributary, and would recommend including the easternmost of the northerly Unnamed Creek tributaries since it is open channel (the one that is UDFCD Maintenance Eligible).
- 5. UDFCD will review the DRAFT stream layer to verify the above additional tributaries, and any others that may have been missed. The following discussion includes what may result in additional tributaries to be included, or at least problem areas that require further investigation.
- 6. Stacey identified an area of concern for SEMSWA that is near E. Fair Place, just north of Valley Club Acres Tributary. It needs to be investigated if this area, informally referred to as the area tributary to Grove Ranch, should drain to Valley Club Acres Tributary. The land use case is called "Legends at Centennial" and is a congregate care facility. The Fellowship Community Church sold a portion of their parcel that is now in process with SEMSWA undergoing development review. The development plan is to discharge on-site detention pond flows into the Church retention pond. The viability of the Church retention pond is also in question. SEMSWA will provide additional data regarding this specific challenge.
- 7. Cathleen identified area south of the southerly unnamed tributary which drains to and across a portion of the 17 Mile House property and requested that it be included with this Master Plan. This area may have been studied in the 1999 OSP but may need to be added to this scope of work to address flooding problems at 17 Mile House. Roger noted that Arapahoe County Open Spaces has developed a 17-Mile House Farm Park Master Plan, but improvements have not been analyzed.
- 8. Shea requested local sponsor feedback whether or not resultant floodplains are to be mapped by FEMA or remain as CWCB regulated only. Jon indicated it depends on the study findings.

Cherry Creek Tributaries MDP & FHAD Kickoff Meeting Minutes

- Stacey indicated that SEMSWA will be consistent with other regulated tributaries within their jurisdiction.
- 9. Cathleen asked if the study would identify funding and Shea stated that the study would only provide cost estimates broken down by jurisdiction.
- 10. Rich stated that he has received a call from the Townhomes (Pioneer Hills) adjacent to Joplin Tributary regarding erosion and asked that this study verify this statement. Ken confirmed that the channel is incised with sharp bends and active erosion.
- 11. Ken indicated that J3's cursory review during the proposal phase indicated that few detention or water quality facilities had been observed and that the Cherry Creek Basin Water Quality Authority may be interested in adding additional water quality to these tributaries. Shea will contact Cherry Creek Basin Water Quality Authority during the Alternatives Analysis phase to discuss water quality and their potential participation.
- 12. Jon would like to include an analysis of flow rates and velocities for roadway overtopping conditions. Shea said this would part of the Alternatives Analysis phase.
- 13. Shea requested local sponsor input regarding any known detention ponds. Rich mentioned the Belleview Pond, but only if the project will incorporate this tributary. Ken mentioned RB1-Pond 4 within Joplin Tributary. Rich and Shea confirmed that it is UDFCD maintained and that it should therefore be included with the baseline hydrology. The pond near the Arapahoe/Parker Roads Interchange was also identified as one that receives maintenance. Shea and Rich agreed to look for any information that UDFCD may have for this tributary or will otherwise contact CDOT for additional information.
- 14. A discussion regarding data collection and areas requiring further research followed and covered the following topics:
 - a. Future Land Use Data Aurora has made available all future land use data available for retrieval. J3 familiar with this data. Cathleen referenced the 2018 Comp Plan for the County and Stacey will verify what is available for the City of Centennial.
 - b. Shea will provide 1-foot topography; will also initiate the structure survey once all of the additional reaches are identified that are to be included with this study.
 - c. Aurora will provide site plan for Kings Point
 - i. Shea indicated that Filings No. 1 and 2 show only a temporary pond no permanent detention. This is not currently an acceptable solution.

Page 3 of 6 Page 4 of 6

Cherry Creek Tributaries MDP & FHAD Kickoff Meeting Minutes

- d. Cathleen noted a proposed detention pond near Parker Road that is planned with the King's Point Filing No. 1 Development. It outfalls under Parker Rd. and across the 17 Mile House property. (Note: location of this pond requires clarification – J3 to follow up with Cathleen). Roger noted that we would need to know where flows from the King's Point primary arterial would go.
- e. The southerly unnamed tributary does flow across Parker Road through an apparently adequately sized box culvert but is conveyed overland, and not within a defined channel. The alternatives analysis phase will need to identify a low-maintenance stream section for this reach.
- f. The Cherry Creek Basin Water Quality Authority watershed model was referenced. Rich will contact CCSP to get a better understanding of what that scope of work is so that if necessary, efforts can be coordinated.
- 15. Shea requested that we meet again in approximately five (5) weeks. Ken to begin scheduling.
- 16. Follow-up for the website is required.
- 17. Additional observations by J3 and/or discussion items are summarized below:

SOUTHERLY UNNAMED TRIBUTARY

- Mostly Undeveloped Land
 - Stacey made reference to the 17 Mile House Farm Park Master Plan and indicated that Arapahoe County Open Spaces is concerned with conveyance and increased flows from upstream King's Point development across the property. Open Spaces utilizes the property for parking during the Fall Festival.
- o Future Development
- Multiple Smaller Tributaries

CHENANGO TRIBUTARY

- Cherry Creek Valley Ecological Park;
 - i. Rich stated that we may need to consider improvements upstream of trail but in general, this reach appears in good shape.
 - ii. Roger indicated that Arapahoe County Open Spaces would support water quality facilities on the Eco Park property.
 - iii. Stacey indicated that there is a large, undeveloped parcel on the west side of S
 Parker Rd in Centennial that is expected to develop. In addition to low-maintenance
 stream recommendations, this plan should recommend area to reserve for
 floodplain.
- Direct outfalls with no apparent water quality
- Lack of regional detention

Cherry Creek Tributaries MDP & FHAD Kickoff Meeting Minutes

- o 1999 OSP crossings of South Parker Road Routing impacts
- o Rural drainage infrastructure upstream of Parker Road
- Multiple smaller tributaries

JOPLIN TRIBUTARY

- Densely developed basin
- o Half of basin is aligned through Cherry Creek State Park;
 - i. Rich requested that we show Cherry Creek State Park Property on all affected tributaries.
 - ii. A Cherry Creek Basin Water Quality Authority Watershed Plan is under development.
- o Active construction through Pioneer Hills Development
- Reach is dominated by wetlands
- Severe right bank erosion;
 - i. Jon indicated a narrow area between the left bank water quality ponds and the right bank Pioneer Hills Development where the drainageway necks down; the floodplain is likely not contained through this pinch point.
- o Private detention and water quality ponds
- Complex outfall structure downstream of south chambers road
- o Aurora and Centennial split easement (72" and 36" RCP)
- o RB1-Pond 4
- o Regional detention and water quality are not present

VALLEY CLUB ACRES TRIBUTARY

- Southeast Regional Detention Basin verify;
 - i. Stacey identified the pond at Northwest of Interchange. More research needed in this area as it is not clear which pond or outfall alternative was constructed.
 - ii. Stacey also indicated following the meeting that there is a sub-regional extended detention basin that serves the Centennial Center commercial development (NW corner of Parker/Arapahoe) that appears to tie into the Valley Club Acres outfall system.
- o 12' x 6' RCBC verify as it impacts basin area
- o Drainageway predominantly contained in storm sewer
- o Only 600 feet of open channel; all of which are within Cherry Creek Floodplain
- o Challenging design will be needed if existing storm is undersized

NORTHERLY UNNAMED TRIBUTARY

- o Largely within Cherry Creek State Park
- o Regional detention and water quality are not present
- o Active bank erosion

Cherry Creek Tributaries MDP & FHAD Kickoff Meeting Minutes

SCHEDULE

Kickoff Meeting	September 10, 2018
Progress Meeting (+5 Weeks)	TBD
Submit Draft Baseline Hydrology	November 16, 2018
Complete Review of Draft Baseline Hydrology	December 7, 2018
Comment Review Meeting	December 10, 2018
Complete Corrections to Draft Baseline Hydrology	December 28, 2018
Baseline Hydrology Approved	December 31, 2018

ACTION ITEMS

- 1. UDFCD (Shea) to review DRAFT stream layer to confirm additional tributaries for inclusion.
- 2. SEMSWA (Stacey) will provide additional drainage information for the area tributary to Grove Ranch Drainage.
- 3. UDFCD (Shea) to contact Cherry Creek Basin Water Quality Authority during the Alternatives Analysis phase to discuss water quality and potential participation.
- 4. UDFCD (Shea and Rich) to research additional information that may be available for the pond at the Parker/Arapahoe Road Interchange; this may require contacting CDOT.
- 5. J3 (Ken and Allie) will obtain as much public land use data that is currently available and request assistance from Stakeholders where necessary.
- 6. Arapahoe County (Cathleen) will provide J3 with additional information regarding the 2018 Comp Plan.
- 7. SEMSWA (Stacey) will verify availability of GIS layers for impervious land use areas what land use data from Centennial and provide what is available.
- 8. Aurora (J3 did not note a specific person) will provide site plan for King's Point
- 9. J3 (Ken and Allie) will follow up with Cathleen regarding Item 13.d
- 10. UDFCD (Rich) will contact Cherry Creek Basin Water Quality Authority to better identify the scope of work for their Watershed Master Plan.
- 11. J3 (Ken) will schedule a progress meeting
- 12. UDFCD (Rich) will relay website discussion to Shea for direction regarding web-based master plan.
- 13. J3 (Ken and Allie) will roll out project website in approximately two weeks.

Page 5 of 6

8100 E. Maplewood Ave. #150 Greenwood Village, Colorado 80111 Phone: 303.368.5601

Fax: 303.368.5603

PROGRESS MEETING MINUTES

DATE/TIME: OCTOBER 23, 2018 @ 3:00 P.M.

LOCATION: UDFCD OFFICE

PROJECT: CHERRY CREEK TRIBUTARIES MDP & FHAD

ATTENDEES:

Shea Thomas - UDFCD

Richard Borchardt – UDFCD

Stacey Thompson – SEMSWA

Angela Howard – SEMSWA (phone)

Roger Harvey – Arapahoe County

Craig Perl – City of Aurora (phone)

Jonathan Villines – City of Aurora (phone)

Allie Beikmann – J3 Engineering

Ken Cecil – J3 Engineering

Purpose

- 1. Review Action Item status.
- 2. Review project progress. See Discussion Item 1.
- Review stakeholder input for sub-basin delineation. See Discussion Item 3.
- 4. Review schedule First deliverable is Draft Baseline Hydrology. See Discussion Item 4.

DISCUSSION ITEMS

- 1. Ken provided an update regarding the status of action items identified at the project kickoff meeting, with most being complete. Incomplete items pertain to future phases and are not critical at this time. Dewberry | J3 will continue to track and request from assigned attendees at the appropriate time. The remaining items are:
 - a. UDFCD (Shea) to contact Cherry Creek Basin Water Quality Authority during the Alternatives Analysis phase to discuss water quality and potential participation.

Page 1 of 4 Page 2 of 4

Cherry Creek Tributaries MDP & FHAD Progress Meeting No. 1

- UDFCD (Shea and Rich) to research additional information that may be available for the pond at the Parker/Arapahoe Road Interchange; this may require contacting CDOT.
- c. J3 (Ken and Allie) will follow up with Cathleen regarding Item 13.d (Detention Pond @ King's Point)
- d. UDFCD (Rich) will contact Cherry Creek Basin Water Quality Authority to better identify the scope of work for their Watershed Master Plan. Rich noted that he will contact Jim Swanson and Chuck Reid to discuss funding opportunities. It was further clarified that the project scope of work will not change based on potential overlap with the Cherry Creek Water Quality Authority. However, a comparison to benefit both studies is the goal.
- 2. An update of project progress was provided. The project team has been working with UDFCD behind the scenes to increase the project scope of work to include four additional tributaries as requested at the kickoff meeting. This includes critically evaluating the Grove Ranch basin, the Arapahoe Road basin, Cottonwood Basin, and 17 Mile Basin. It was agreed that each of these additional basins will be included with the project.
- 3. A discussion of the additional basins and their resultant floodplains followed. The results of the baseline hydrology and first look at hydraulics will help inform whether to map the floodplains with CWCB, FEMA, or neither on a tributary basis. A discussion of how to address each stream will be a portion of the comment review meeting agenda.
- 4. Analyzing the inclusion of the additional basins effectively ended on October 11. Consequently, the design team is approximately 3 weeks behind schedule and requests that the Draft Baseline Hydrology submittal and subsequent milestones be extended to December 7. A draft revised schedule was presented, but it was requested that the schedule be further modified so that the comment review meeting occur after the first of the year. UD approved the revised schedule during the meeting.
- 5. Shea provided stakeholder feedback regarding additional costs that will need to be funded for the inclusion of the additional tributaries with regard to future phases. This discussion

Cherry Creek Tributaries MDP & FHAD

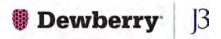
Progress Meeting No. 1

would be ongoing, but it was requested that that the project team proceed with the study and that funding will be resolved prior to the next phase.

- 6. Major basin delineation is undergoing internal QA/QC. A brief review of this process was discussed:
 - a. Detailed subdivision boundaries are possible by reviewing development plans. It was decided that this level of detail is not warranted and that relying on the onefoot topography is sufficient.
 - b. Several areas not within the major basins require further investigation. These areas will be included with the MDP as Direct Flow Areas but will not be included with alternative analysis or concept design.
 - c. The Valley Club Golf Course major basin should be validated to ensure that portions of the course are outside of the major basin as shown on the draft meeting exhibit. Rich referenced the 2D model developed by Glenn Hamilton at Muller and that we could request this to help answer the question. However, since most of the golf course is within the floodplain of Cherry Creek, the basin presented in the draft meeting exhibit is appropriate.
 - d. E470 Drainage Plans need to be reviewed to clarify whether or not all road drainage is captured within the Southern Unnamed Tributary.
 - e. The outfall for the Cottonwood Basin at Peoria is not observable. It may be a silted in culvert. This should be picked up via structure survey.
- 7. Beginning sub-basin delineation and will rely on comments received at kickoff meeting to help identify logical design points. Additional input regarding known flooding locations or trouble areas was requested but no known areas were identified.
- 8. Future conditions hydrology is required for all basins. Because the southern two basins are undeveloped, the project team will also evaluate existing conditions hydrology.
- 9. Shea referenced the Interactive Hydrology Feature and will provide documentation as an example for Dewberry | J3 to follow for the MDP.
- 10. Open Discussion

Cherry Creek Tributaries MDP & FHAD

Progress Meeting No. 1


ACTION ITEMS

- 1. Doodle Poll for Comment Review Meeting (Ken).
- 2. Provide funding detail to stakeholders (Shea).
- 3. Stakeholders to resolve funding prior to next project phase (All).
- 4. Dewberry | J3 to continue with basin refinements (Ken, Allie & Danny).
- 5. Update and distribute schedule (Ken).

PROJECT SCHEDULE

Kickoff Meeting	September 10, 2018
Progress Meeting (+5 Weeks)	October 23, 2018
Submit Draft Baseline Hydrology	December 7, 2018
Complete Review of Draft Baseline Hydrology	December 28, 2018
Comment Review Meeting	December 31, 2018
Complete Corrections to Draft Baseline Hydrology	January 18, 2019
Baseline Hydrology Approved	January 21, 2019

Page 3 of 4 Page 4 of 4

8100 E. Maplewood Ave. #150 Greenwood Village, Colorado 80111 Phone: 303.368.5601

Phone: 303.368.5601 Fax: 303.368.5603

COMMENT REVIEW MEETING MINUTES

DATE/TIME: JANUARY 14, 2019 @ 1:00 P.M.

LOCATION: UDFCD OFFICE

PROJECT: CHERRY CREEK TRIBUTARIES MDP & FHAD

ATTENDEES:

Shea Thomas - UDFCD
Dana Morris – UDFCD
Stacey Thompson – SEMSWA
Cathleen Valencia – Arapahoe County
Roger Harvey – Arapahoe County
Jonathan Villines – City of Aurora
Allie Beikmann – Dewberry | J3
Ken Cecil – Dewberry | J3
Danny Elsner – Dewberry | J3

PURPOSE

- 1. Review select comments and present comment response action plan.
 - a. Reference on screen document for discussion.
- 2. Discuss next steps.

DISCUSSION ITEMS

- 1. Personnel Updates
 - a. Kurt Bauer will be the new UDFCD project manager (PM) on this project and will be joining UDFCD in approximately one month.
 - b. Jon Villines will be leaving the City of Aurora and joining UDFCD. Replacement for Jon is TBD. Jon also noted that he sent comments early that morning following return to work. Dewberry | J3 reviewed them and sent response back to Jon and Shea (UDFCD) on 1/18/2019.
 - c. Dana Morris (UDFCD) will be conducting the FHAD review.

Page 1 of 8 Page 2 of 8

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

2. Project Title Name

- a. Current title needs clarification "Cherry Creek Tributaries Upstream of Cherry Creek Reservoir MDP". UDFCD indicated the title needs to start with the main tributary name "Cherry Creek".
- b. Proposed best option is "Cherry Creek Minor Tributaries in Arapahoe County MDP". UDFCD will review and get back with us.

3. Tributary Names

- a. UDFCD indicated that unique names are important and ideally have reference to local landmarks, such as streets.
- b. North Unnamed Tributary (NU)
 - i. Suggested Lake View Tributary and attendees accepted.
 - ii. 2019-1-15 Update: Lakeview is already taken in Thornton. Dewberry | J3 proposed Little Raven Creek instead.
- c. Tributary to Cottonwood Creek (TC)
 - i. Suggested Suhaka Tributary due to proximity to the model airfield. Suhaka is named after an avid radio-controlled airplane flyer who built and flew his own planes out of the field at Cherry Creek State Park, also named after him.
 - ii. SEMSWA verified this name was acceptable on 1/18/2019. Suhaka is currently the last name of a member on the Centennial City Council.

d. Valley Club Acres:

- Agree to use Valley Club Acres (VCA) instead of Valley Club (VC) throughout.
- e. North Arapahoe and Parker, South Arapahoe and Parker:
 - i. Agreed to remove "and Parker" and modify to North Arapahoe Tributary and South Arapahoe Tributary (NA, SA).
- f. South Unnamed Tributary (SU):
 - Suggested Kragland Tributary or Dransfeldt Tributary due to historical significance.
 - ii. Roger indicated he would discuss with Karen at 17-Mile Farm House to find a good, historically significant name.

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

- 4. Clarified role of Arapahoe County in this project and agreed they are a stakeholder and SEMSWA is the sponsor that operates on their behalf. Wording will be clarified in the text and Arapahoe County logos will still be reflected in documents.
- 5. Dewberry | J3 asked if watershed numbers could be found online and what significance they have. UDFCD indicated they are part of a filing system that is generally not used anymore. Future MDP documents don't need to include it.

6. Main Tributary Comments

- a. TC: Exhibit makes it appear tributary outfalls to Cottonwood Creek prior to crossing Peoria. Please clarify.
 - i. Outfall is downstream of Peoria. Dewberry | J3 will add a street name to clarify.
- b. J: Let's discuss your travel path for subcatchment J2, since the shape factor is a bit excessive.
 - Attendees agreed to the approach of modifying the shape of the basin by removing the narrow "tail" downstream to get a better shape factor in CUHP.
- c. NAP1: Can we discuss the catchment delineation in this area? It seems odd that NAP1 would really narrow down this much without adjacent area contributing.
 - NAP1 (NA1) will be cut off at Parker Rd. and the area downstream of Parker Rd. will be removed from hydrology. Upstream will be routed through piping infrastructure simulated in the model.
- d. NAP3: Should this be the downstream limit for NAP3? Arapahoe Rd would then be incorporated into NAP2.
 - i. The current configuration is acceptable since this area doesn't go to the pond.

7. DFA Catchments

a. Attendees agreed to remove all DFAs with the exception of C-DFA2 which will be modeled up to Parker Rd and renamed to Tagawa Tributary. The other DFA areas do not have definitive outfall points along the tributaries and large portions are already in the floodplain.

8. Ponds

- a. RB1-4
 - i. Confirmed that SEMSWA owns and maintains this pond.

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

ii. Dewberry | J3 indicated that the stage-storage curve in the report needs updating to match the current curve used in the model.

b. NAP/Pond E (North Arapahoe Pond)

- i. Confirmed that SEMSWA owns and maintains this pond.
- ii. SEMSWA indicated that they want to clarify the Filings that are served by this pond. Documents from SEMSWA indicated it serves Filings 7, 8, and 9 for the Farm at Arapahoe County.
- iii. Agreed to call the pond "North Arapahoe Pond" or NA pond for model inputs. However, a section will be included in the text noting that this is also referred to as Pond E by local agencies.
- iv. Danny discussed how Dewberry | J3 developed the stage-storagedischarge curves and the discrepancies between as-built records and current LiDAR.
- v. Attendees agreed that a survey would be beneficial and Shea estimated it would take a couple weeks to get this done.

c. SAP Pond

i. Confirmed this pond is not publicly owned and maintained, and not maintenance eligible.

d. NU Detention Pond

- i. Dewberry | J3 indicated that this pond has a pseudo-outlet works at E Belleview Ave. that consists of two pipes, one five feet above the other.
- ii. The parcel appears to be owned by the United States and is part of Cherry Creek State Park. It inadvertently provides detention and thus is not included in the model. It also doesn't appear to be maintained for detention.
- iii. Ken noted that the downstream-most pipe in CC State Park appears to be very undersized for current flow conditions. This will be included in the report since it may be of interest for the Park.
- iv. Shea noted that Rich Borchardt may be a good contact for future information re: the CC Basin Water Quality Authority model, as he will be working on the project.

e. TC Detention Pond

i. Agreed to refer to the identified pond as a "stock pond".

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

- 9. Imperviousness and Land Use
 - a. J: SEMSWA had a comment regarding the Arapahoe County 2035 Transportation Plan for future widening of Parker Rd. from 4 to 6 lanes, and if any adjustments are necessary to the future conditions impervious values.
 - i. Dewberry |J3 indicated that Parker Rd. and the ROW was drawn in as a 100% impervious area and is thus a conservative land use, since typically land use areas include the adjoining streets. Attendees agreed to use the resulting comp %I for both existing and future conditions and no changes need to be reflected for future conditions.
 - b. VC-DFA: SEMSWA had a comment regarding future residential development in part of Valley Club Acres Golf Course. Since this DFA subbasin is going to be removed, this issue no longer needs addressing.
 - c. GR: SEMSWA indicated an area is identified as "Urban Center" on Centennial's 2040 Comprehensive Plan (Centennial NEXT).
 - i. Dewberry | J3 will determine the corresponding imperviousness value for Urban Center land use. The resulting comp %I will be used as the future conditions.
 - d. C1: Much of this area is identified as "Regional Commercial" on the Arapahoe County 2018 Comprehensive Plan. It is currently built-out as residential.
 - Attendees agree this future zoning type appears odd given the built-out nature of the area. Cathleen indicated she will check with long-range planners at Arapahoe County to confirm the accuracy of this projected land use.
 - e. SU1: Part of this area is identified as "Urban Center" on Centennial's 2040 Comprehensive Plan (Centennial NEXT).
 - i. Dewberry | J3 Will modify and the resulting comp %I will be used as the future conditions. There will be a separate existing conditions model for this subbasin since development is proposed in a large part of the tributary basin.
 - 1. Note: Dewberry | J3 found following this meeting that the Urban Center area extends to a small part of Subbasin 17A. The same method of existing vs. future for SU1 will be applied to 17A.
 - f. 17A: SEMSWA comments that 17-Mile House Farm park has a master plan and %I values could be adjusted to account for future development.

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

- i. Dewberry | J3 indicated that the current %I value is conservative since a large area is considered single-family residential for the study even though it is a large open property. Since only 1.8 acres of the land is developable and the land use is conservative, attendees agreed to use the current comp %I of 13.7% but request language added to the text.
- g. What 100-yr rainfall value was used in the previous study? How does the %I compare between that study and this one? (OSP Study).
 - i. Rainfall for the current MDP is lower than the 1999 OSP. Dewberry | J3 will show the difference for the 100-year rain event and compare to Table A-5 from the 1999 OSP at possible points of comparison.
- h. Often it's better to compare unit runoff (cfs/ac) rather than just runoff. Would that be a valid comparison in this case? (pg. 3-5, UD)
 - i. New comparison table shown during the meeting will be added.
- i. Arapahoe County indicated that existing and future flows from the MDP do not match the Kings Point drainage report.
 - i. Dewberry | J3 found that flows for subbasin 17B are close to the drainage report but much higher for the SU tributary because the MDP included a larger area and an overall higher comp %I. CUHP/SWMM models confirmed this, although there is still a difference of 120 cfs for the 100-yr.
 - ii. The MDP does not include the proposed ponds. Shea noted that she will talk to Morgan at UDFCD to see if developers will run their models without the ponds and verify similar flows (higher flows).
- 10. Jurisdictional questions, appendix comments and grammatical error comments were not discussed as answers and edits are readily known.

11. Additional storm events

a. UDFCD requested modeling of two additional storm events: the 1-year and water quality (WQ) events. This would entail a short paragraph discussing the events and inclusion of a separate table in the Appendix.

12. Project Budgeting

- a. UDFCD requested that Dewberry | J3 send a comparison table of tributary length to estimate additional project cost.
- b. UDFCD and SEMSWA to discuss funding.

Page 5 of 8

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

13. FHAD

- a. The position on whether or not to conduct a FHAD for each tributary was discussed at the end of the meeting and the conclusions are below. SEMSWA noted that alternatives will be studied for tributaries even if a FHAD is not conducted for them. And UDFCD indicated that a FHAD is not required if overflow from storm infrastructure is contained in the street flow.
- b. North Unnamed Tributary limits are from Belleview Avenue to NU3 basin.
- c. Tributary to Cottonwood no FHAD.
- d. Joplin Tributary limits are from Cherry Creek floodplain to at least J6 basin, may go farther along storm sewer if concentrated sheet flow puts properties into the floodplain.
- e. Grove Ranch Tributary no FHAD.
- f. Valley Club Acres Tributary no FHAD.
- g. North Arapahoe & Parker limits could be along storm sewer if a floodplain is found in the overflow of the storm.
- h. South Arapahoe & Parker limits could be along storm sewer in SAP1 basin, but will at least be from Parker to SAP4 basin.
- i. Chenango Tributary limits are from Cherry Creek floodplain to C9 basin.
- j. South Unnamed Tributary limits are from Cherry Creek floodplain to SU7 basin.
- k. 17 Mile no FHAD.

Cherry Creek Tributaries MDP & FHAD Comment Review Meeting Minutes

ACTION ITEMS

- 1. All stakeholders to confirm that "Little Raven Creek" is an acceptable name for North Unnamed Tributary.
- 2. Stacey (SEMSWA) to verify Suhaka is an acceptable name for Tributary to Cottonwood.
- 3. Roger (AC) to discuss name options for South Unnamed with Karen at 17-Mile Farm House.
- 4. Shea (UDFCD) to schedule a survey for North Arapahoe pond to develop accurate stage-storage-discharge curves.
- 5. Cathleen (AC) to check with long-range planners at Arapahoe County to confirm the accuracy of "Regional Commerical" for the area of subbasin C1 (Chenango) under future conditions.
- 6. Dewberry | J3 to pick up comments in final baseline hydrology report as discussed in the meeting and provided in comments by the stakeholders.
- 7. Dewberry | J3 to send tributary length comparison table to UDFCD for review.
- 8. Dewberry | J3 will review Jon Villines comments and follow-up as necessary for inclusion.

PROJECT SCHEDULE

Kickoff Meeting	September 10, 2018
Progress Meeting (+5 Weeks)	October 23, 2018
Submit Draft Baseline Hydrology	December 14, 2018
Comment Review Meeting	January 14, 2019
Complete Corrections to Draft Baseline Hydrology	February 1, 2019
Baseline Hydrology Approved	February 4, 2019

Page 7 of 8 Page 8 of 8

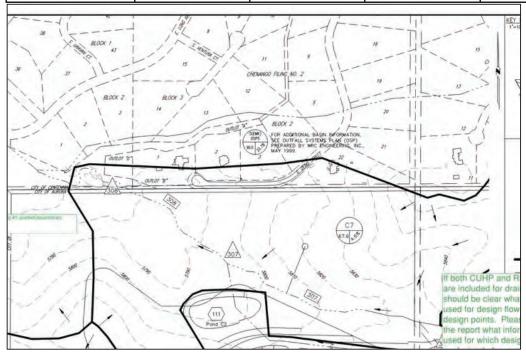
Cherry Creek Tributaries MDP FHAD Baseline Hydrology Comment Responses

Comment	Page	Response
PROJECT NOMENCLATURE		
Would this title make more sense? "Cherry Creek Tributaries in Arapahoe County" Let's discuss.	Cover	Modified to "Cherry Creek Minor Tributaries in Arapahoe
Future submittals will build on this report, so try to avoid references to just baseline hydrology. The purpose and	1-1	County" Removed references that refer to document solely as
scope should be for the entire study. 4600	2-1	baseline hydrology. Updated text to include watershed number.
Let's name this.	2-1	Updated text to reflect new tributary names, including Little
Let's give this a name. There are other tributaries to Cottonwood Creek so this could get confusing. Let's name this.	2-1 2-1	Raven Creek (previously North Unnamed), Suhaka Creek
Earlier in the report it was stated that unnamed tributaries would be named - will this be changed?	3-2	(Trib to Cottonwood), and Kragelund (South Unnamed).
Valley Club Acres?	2-1	Revised all tributary names and references to Valley Club Acres (VCA).
Do we need to include the "and Parker" on these?	2-1	Modified tributary names to North Arapahoe (NA) and South Arapahoe (SA).
STREAM GEOMETRY		
Exhibit makes it appear tributary outfalls to Cottonwood Creek prior to crossing Peoria. Please clarify.	2-3	Added a street name to the figure to clearly identify that it crosses the road before outfalling to the creek.
Is this correct that the property is an Arapahoe County Park? I understood that it was part of State Park property.	2-3	The text was incorrect and revised to indicate the property is Cherry Creek State Park.
Are both pipes located in Centennial?	2-3	The text was incorrect and revised to indicate that the 72"
SEMSWA's service area covers the City of Centennial and the urban areas of Unincorporated Arapahoe County.	2-5	pipe is in Aurora and the 36" is in Centennial. Revised to remove Greenwood Village as part of the
The Aranghae County 2025 Transportation Plan identifies future Barker Pd improvements interchange		Service area.
The Arapahoe County 2035 Transportation Plan identifies future Parker Rd improvements interchange at Parker/(future) Aurora Pkwy and widening between Quincy and Chambers. Are any adjustments necessary to the future conditions impervious values to account for these future roadway improvements?	2-5	No. Discussed during meeting and included in text that the land use assumption of "Streets" for the existing extent of Parker Rd. is adequate and conservative.
Where is this?	2-6	Kragland Acres is located near the now named Kragelund Tributary and the locations will be more apparent.
and Filing No. 9?	3-3	Revised to include reference to Filing No. 9 and specifically Tract A.
STAKEHOLDER INFORMATION		
Arapahoe County is a project stakeholder	1-1	Modified language to say AC is a stakeholder, not a direct sponsor.
Cherry Creek Watershed (Rich's title)	1-3	sponsor.
Add CFM to Stacey's title and revise job title Revise Angela's job title	1-3 1-3	Modified personnel titles as indicated by comments.
PE Since there are so many municipalities involved and the boundaries are complex, maybe consider adding the names of the municipalities impacted in parentheses after each tributary name?	1-3 2-3	Included a jurisdictional table.
PONDS		
What is an undocumented pond?	2-3	Modified to "stock pond".
State who owns/maintains this pond.	2-3	
This facility is owned and maintained by SEMSWA. State who owns this pond.	2-3 3-3	Included text stating SEMSWA owns and maintains RB1-4.
State who owns/maintains this basin. If unknown, just state that it is privately owned.	2-3	Modified to state that it is owned by Cherry Creek State Park and does not appear to undergo maintenance.
State who owns this pond.	2-4	
Is this facility within The Farm at Arapahoe County Filing No. 9, Tract A? The detention basin is known as "Pond E". SEMSWA owns and maintains Pond E.	2-4	Included text stating SEMSWA owns and maintains NA Pond (Pond E).
State who owns this pond.	3-3	rona (rona L).
Did you also confirm the outlet works matched the as-builts to develop the stage-discharge curve?	3-3	Included text indicating the discrepancy between LiDAR contours and as-built data and proceding steps to conduct
	Table B-3	a survey by UDFCD.
Does not match storage curve in model.	Detention Rating Curves	Updated storage curve in the Appendix to reflect the model
PREVIOUS STUDIES AND FLOW COMPAR		
What 100-yr rainfall value was used in the previous study? How does the %I compare between that study and this one?	3-4	Included a table to compare rainfall data between the 1999 OSP and current MDP.
Often it's better to compare unit runoff (cfs/ac) rather than just runoff. Would that be a valid comparison in this case?	3-5	Updated comparison table to include cfs/ac comparison.
Why are there n/a for this study? Unit runoff instead? Also, why is a value included in the This Study column for this tributary but not the other two tributaries where no comparison is made?	3-5	Previous table was confusing. Updated and only used n/a for North Arapahoe since the OSP studied NA and SA together.
These are pretty significant decreases (23%, 42%, 44%). Include in the text the reason for the decrease - is it strictly due to different rainfall values? Is it also because of different %I used?	3-5	Updated results section with a more detailed analysis of differences between the report and influences on peak flows.
Why not include this in the table?	3-5	Included text that explains this value has no corresponding design point in our current MDP but is still valuable.
Can we just show a dash for all the streams that did not have a separate existing conditions analysis? That seems easier than having to dig for the ones that are different.	3-6	Revised table to reflect comment.
RESPEC, on behalf of the Cherry Creek Basin Water Quality Authority, is completing a Watershed Model for the CC Basin, which may be used as a point of comparison for these tributary areas.	3-4	Noted for future consideration.
and the second s		

Cherry Creek Tributaries MDP FHAD Baseline Hydrology Comment Responses

Comment	Page	Response	
The existing and future flows do not match the Kings Point drainage report. Your numbers are higher and I was just wondering how you came up with them and whether you used the Kings Point report for information. Just trying to make sure I understand.	3-7	Discussed during comment review meeting. MDP will use COA zoning data and corresponding UDFCD land use and imperviousness values which are more conservative than those used in King's Point. In addition the basin areas slightly varied. A comparison was made and presented during the comment review meeting and is also included in this Appendix for reference	
BASIN PARAMETERS, MODELING, AND F	IGURES		
It sounds as though the zoning data was used to represent future land use, which is assumed (for most basins) to be equivalent to existing land use. COA would like for this assumption to be checked using our planimetrics (as appears to have been done for SEMSWA) for the built-out basins, since an imperviousness calculation based on actual existing conditions will be more accurate than just relying on land use data. If the NLCD was used Aurora's northern basins in lieu of zoning, as the maps in Appendix B seem to suggest, we are okay with that (but section 2.2 says that the NLCD was just used to spot-check the zoning data, although Figure B-2 doesn't show zoning data for these basins).	3-2	Dewberry evaluated the imperviousness values based on planimetrics vs land use data at the request of UDFCD and COA. Due to the scale of this study and the limited impact to flow results, it was decided to continue using land use correlated imperviousness values.	
For segments where minimum slope was assumed or pipes are shown as flowing full in the 100-year (if there are any), it would be good to verify slope and invert information from as-builts.	3-4	Yes, for the short segments under Parker and a couple other road crossings, we may request as-builts to verify information for culvert analysis.	
Why would we not model separate segments for each pipe size? Is selecting and average size an accurate way to model the pipe hydraulics (or will this be addressed in the hydraulics section)?	3-4	Text was included to indicate that pipes in SWMM are reflective of an average size, shape, and material for the corresponding pipe series.	
More accurate roughness values (from field conditions) will be used for hydraulic modeling, correct?	3-4	Yes, used UDFCD Volume 1 Chapter 6 Section 4.2.2 procedure for Manning's n for Baseline Hydrology and will use a value corresponding to the channel/pipe roughnesses for the next phase of the MDP.	
Let's discuss your travel path for subcatchment J2, since the shape factor is a bit excessive.	Figure B-1	Modified subbasin J2 geometry to remove narrow stretch of direct flow to Cherry Creek, which lowered the shape factor.	
Can we discuss the catchment delineation in this area? It seems odd that NAP1 would really narrow down this much without adjacent area contributing.	Figure B-1	Modified so that NA1 basin terminates at Parker Rd. and area downstream is removed from hydrology but routed to Cherry Creek via piping.	
Should this be the downstream limit for NAP3? Arapahoe Rd would then be incorporated into NAP2.	Figure B-1	Did not modify. Stakeholders agree the current configuration better reflects flow to NA Pond.	
Should C-DFA1 be cut off here? Let's talk about what the goal is with some of these DFA catchments.	Figure B-1	Removed all DFAs except for C-DFA2 which was renamed to Tagawa Tributary. Other DFAs did not have definitive outfall points.	
J-DFA exceeds the allowable basin shape factor in CUHP. Let's cut the portion adjacent to Cherry Creek out of this subcatchment. It appears that C-DFA 1 is shown as Regional Commercial north of Broncos Pkwy and Urban Center south of Broncos Pkwy. Should the sub-catchment boundary between C-DFA1 and C-DFA2 be Broncos Pkwy instead of Parker Rd?	Figure B-1	Removed this DFA .	
This area is annexing into Aurora and is planned to be rezoned for multi-family residential. As mentioned, a portion of this area is to be rezoned and developed as multi-family residential. Property owner is annexing into Aurora. (Previously, property owner was pursuing annexation into Centennial proposal was approximately 15 acres/370 apartment units.)	Figure B-1 and Table B-4	Removed this DFA.	
This area is identified as "Urban Center" on Centennial's 2040 Comprehensive Plan (Centennial NEXT) A portion of this sub-basin is shown as Urban Center in Centennial's Comp Plan. Should this value be increased to reflect the future land use in both the existing and future conditions models, if we are assuming full build-out at the time of study?	Figure B-1 and Table B-4	Modified land use for that area of Grove Ranch to reflect Urban Center land use for existing and future conditions.	
This area is identified as "Regional Commercial" on the Arapahoe County 2018 Comprehensive Plan These areas are shown as Regional Commercial in the County's Comp Plan. Should these values be increased to reflect the future land use in both the existing and future conditions models, if we are assuming full build-out at the time of study?	Figure B-1 and Table B-4	This area will remain residential as it is built-out and Cathleen (AC) confirmed an updated COMP plan indicates it to remain residential.	
This area is identified as "Urban Center" on Centennial's 2040 Comprehensive Plan (Centennial NEXT)	F: D4 I	M 157 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
These areas are shown as Urban Center in Centennial's Comp Plan. These values should be increased to reflect future land use.	Figure B-1 and Table B-4	Modified land use and imperviousness for subbasins K1 and 17A to reflect this.	
Was the NLCD used to determine existing/future land use in this area, if no zoning data is shown?	Figure B-2	Clarified the use of NLCD data as a check in the text and removed the figure for clarity.	
The 17-Mile House Farm park has a master plan. Should this value be adjusted to account for future development?	Table B-4	Did not modify since stakeholders agreed the current %I value is conservative due to it being a sparse single-family residential plot and only 1.8 acres is developable. Added text to clarify.	
Please use a more detailed report. (Node Depth and Flow Summary, Outfall Loading Summary, Storage Volume Summary, etc.)	Table B-6	Modified to include additional details.	
GRAMATICAL ERRORS AND WORDING ISSUES			
Grammatical, spelling, punctuation, rewording, and other revisions that address inconcequential text errors.	1-1, 1-2, 2-1, 2-2	2, 2-3, 2-4, 2-5, 3-2, 3-5, Interactive Figure, SWMM Routing Schematic	

KING'S POINT COMPARISON


RESPONSE TO COMMENT FROM ARAPAHOE COUNTY

REVIEWED ON JANUARY 14TH, 2019 AT THE COMMENT REVIEW MEETING

The existing and future flows do not match the Kings Point drainage report. Your numbers are higher and I was just wondering how you came up with them and whether you used the Kings Point report for information. (AC)

(future conditions)

SUBBASIN	SOUTH UNNAMED SU3 TO SU7		13	7B
DESIGN POINT	KING'S POINT	BASELINE	KING'S POINT	BASELINE
DESIGN FOINT	308	Bridle_Trail_SU	D1	Parker_17
Trib Area (ac)	373.9	452.9	131.4	123.7
Imperv (%)	21.09	37.6	46.1	36.2
5-YEAR	10	148	34	47
100-YEAR	282	731	194	229

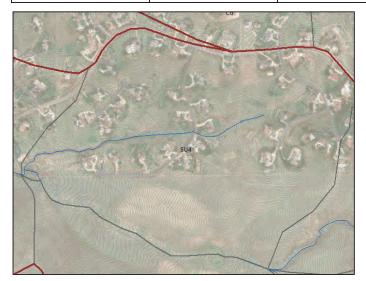
Flows for Subbasin 17B are very close to the drainage report but much higher for the SU tributary, because:

- We include a much larger area of about 80 or so acres in Subbasin SU4, and this area is developed.
 - o Foxfield has a drainage system we don't know about that diverts some water away, removing some area from this subbasin, or
 - o This area's drainage is intended to be routed just downstream of their proposed pond.
- We have similar %I for existing conditions but a higher %I value for future conditions, because:
 - o For SU7: we considered E-470 and its multi-use easements completely impervious AND assumed built out conditions for areas on either side of the toll road, and
 - o OVERALL the UD values for land uses are higher than what they used for residential.

KING'S POINT COMPARISON

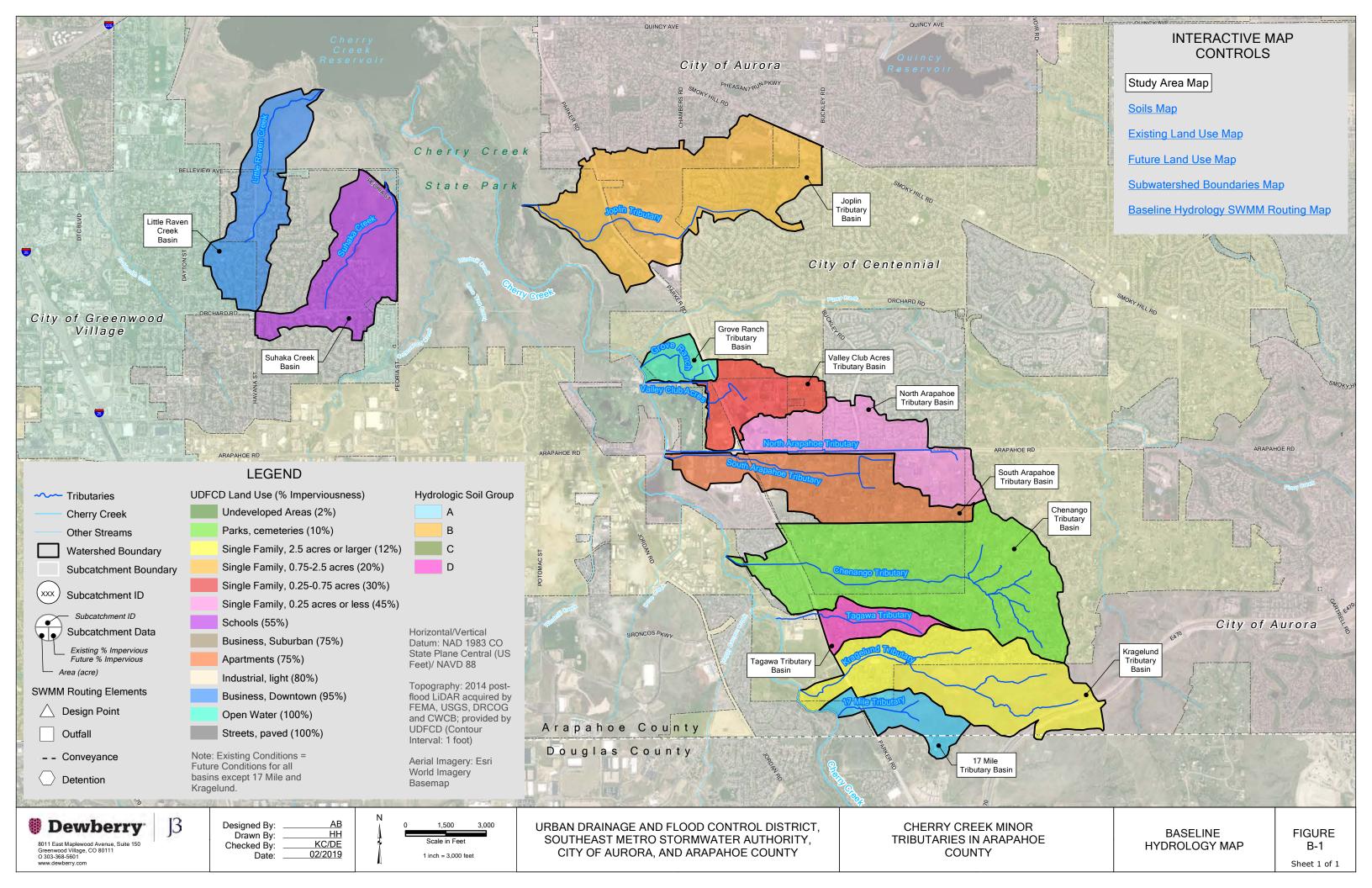
RESPONSE TO COMMENT FROM ARAPAHOE COUNTY

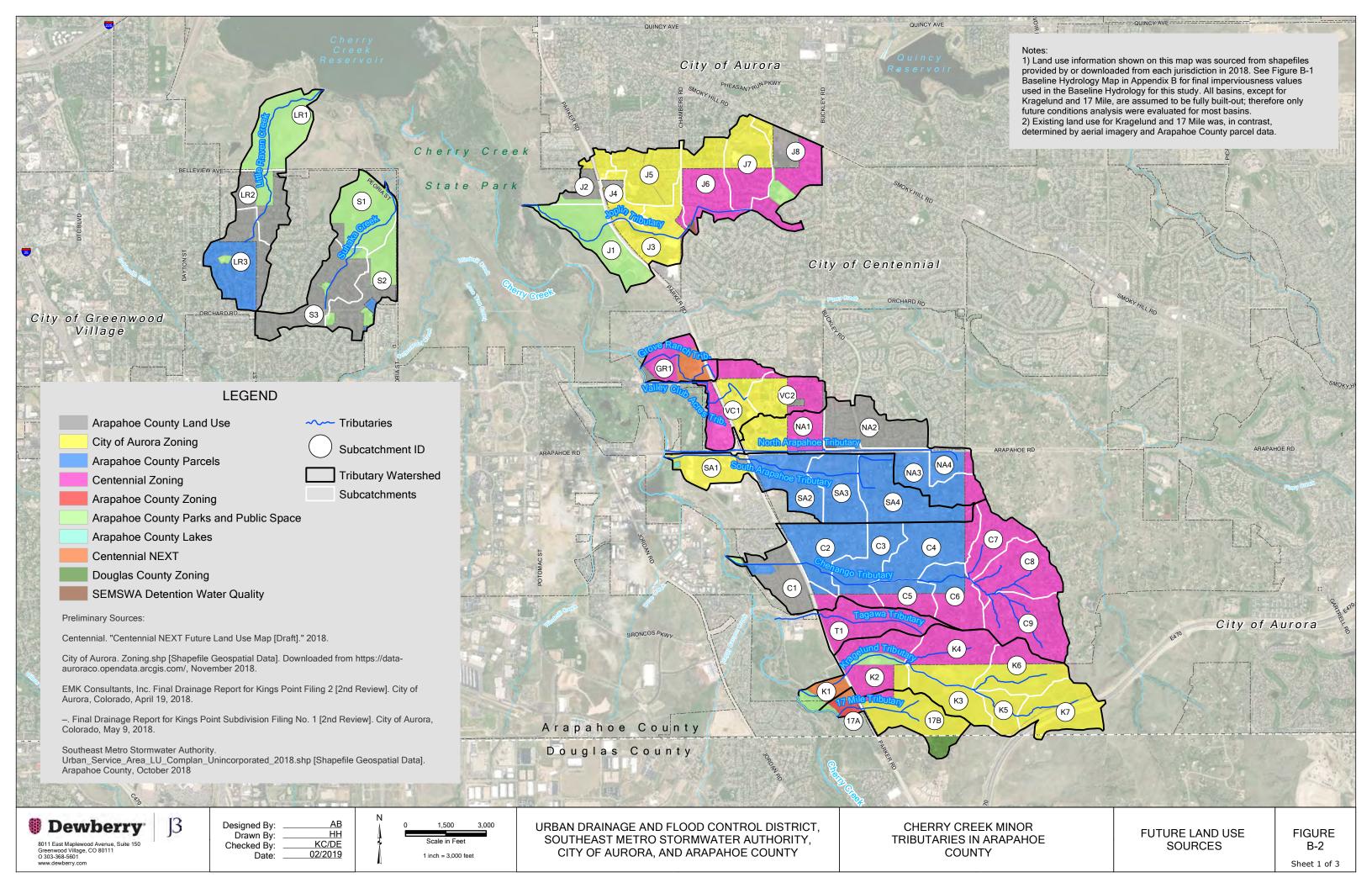
REVIEWED ON JANUARY 14TH, 2019 AT THE COMMENT REVIEW MEETING

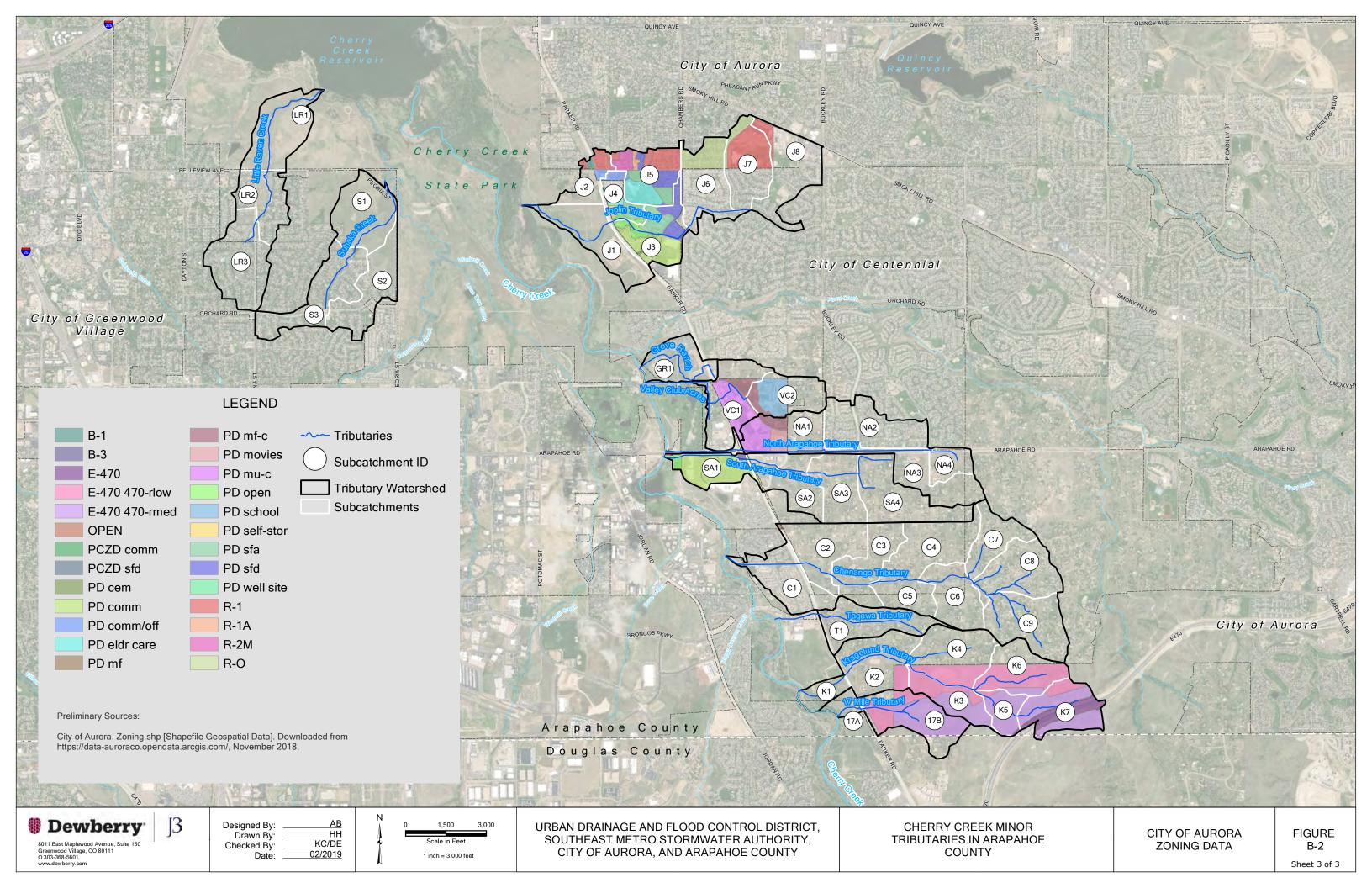

CUHP was modified to reflect lower imperviousness values and a smaller area to see if these were the only causes, and it appears to be the majority of it.

Reducing imperviousness

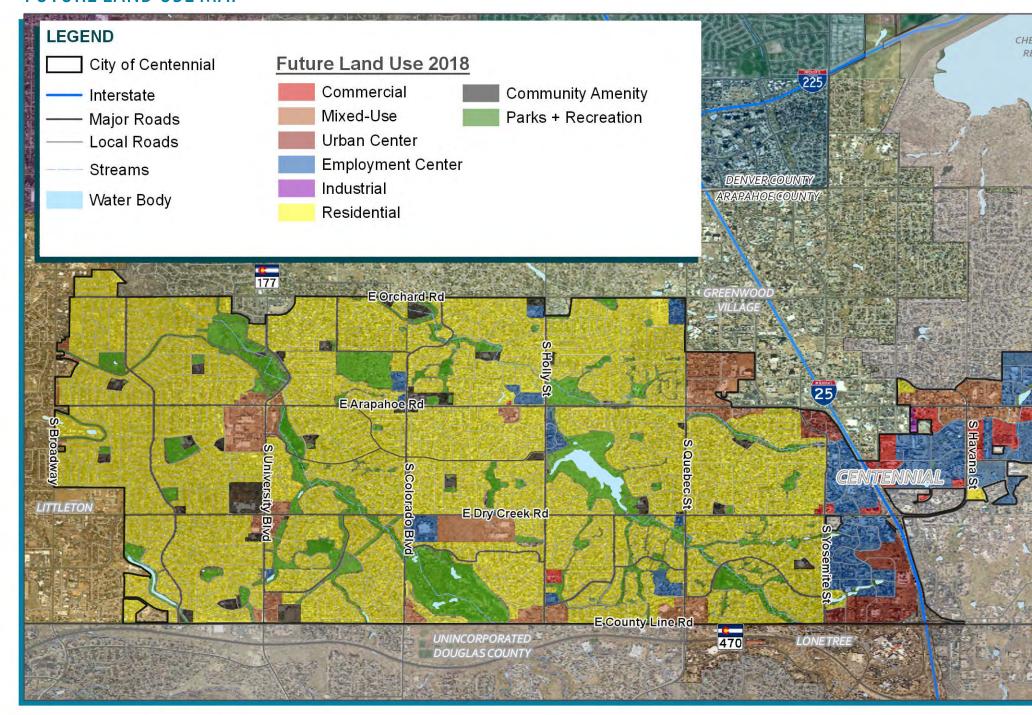
SUBBASIN	SOUTH UNNAMED SU3 TO SU7	
DESIGN POINT	KING'S POINT	BASELINE
DESIGN POINT	308	Bridle_Trail_SU
Trib Area (ac)	373.9	452.9
Imperv (%)	21.09	21.09
5-YEAR	10	60.92
100-YEAR	282	521.01

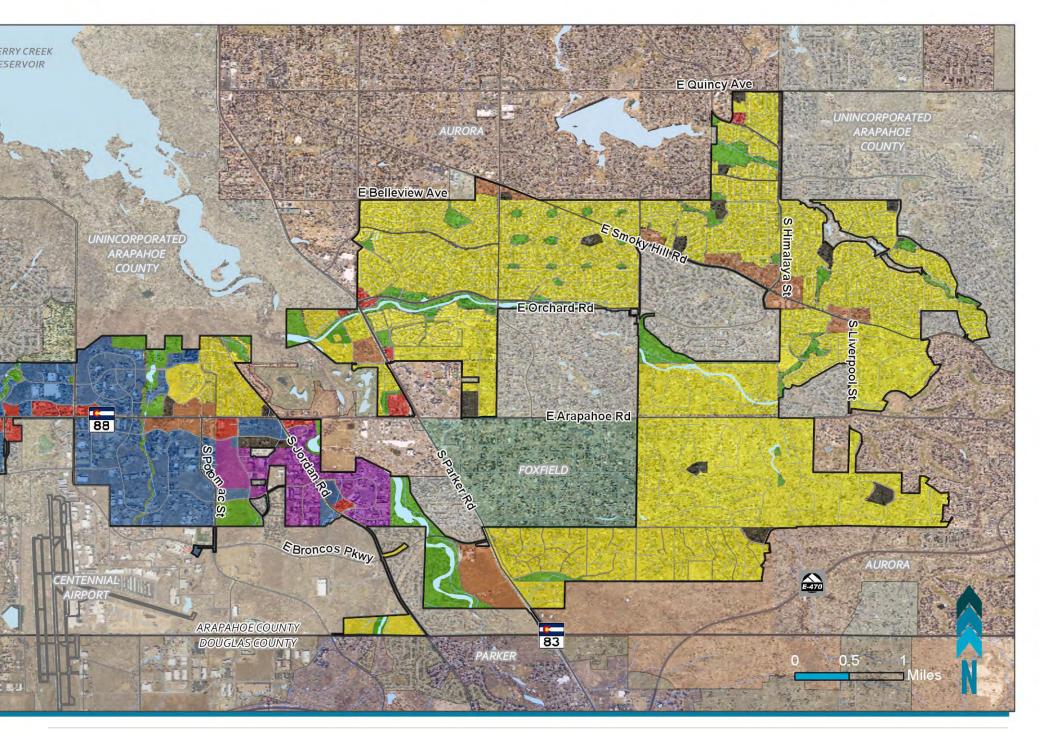

Reducing imperviousness and area


reducing imperviousness and area			
SUBBASIN	SOUTH UNNAMED SU3 TO SU7		
DESIGN POINT	KING'S POINT	BASELINE	
DESIGN POINT	308	Bridle_Trail_SU	
Trib Area (ac)	373.9	374	
Imperv (%)	21.09	21.09	
5-YEAR	10	47.18	
100-YEAR	282	403.4	

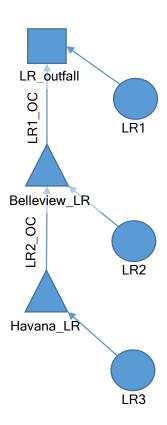

2

APPENDIX B HYDROLOGIC ANALYSIS

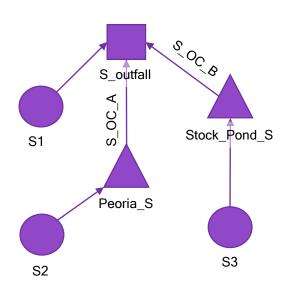




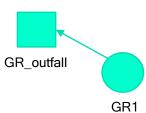
FUTURE LAND USE MAP

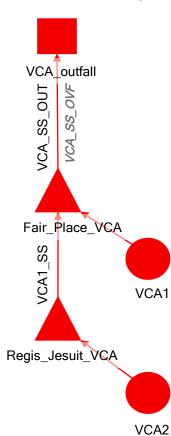


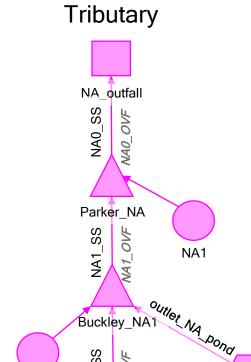
2-8 CENTENNIAL NEXT



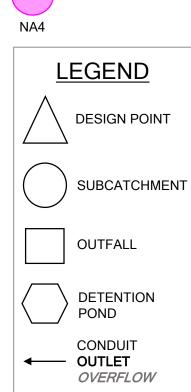
CHAPTER 2: VISION 2-9


Little Raven Creek


Suhaka Creek



Grove Ranch Tributary


Valley Club **Acres Tributary**

Waco_NA

North Arapahoe

NA_pond

NA2

Designed By: HH KC/DE Drawn By: Checked By: 02/2019

URBAN DRAINAGE AND FLOOD CONTROL DISTRICT, SOUTHEAST METRO STORMWATER AUTHORITY, CITY OF AURORA, AND ARAPAHOE COUNTY

CHERRY CREEK TRIBUTARIES UPSTREAM OF CHERRY CREEK RESERVOIR MDP & FHAD

SWMM ROUTING SCHEMATIC

FIGURE B-3

Joplin

Tributary

J_outfall

Parker_J

J3_0C

ದ್ಗ

out_RB1-4_pond

RB1-4_pond

Laredo_J

Lewiston_J

J8

SS

9

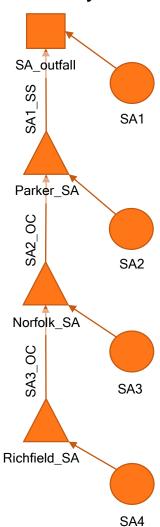
OVF

JA OC

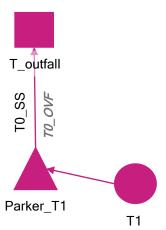
Junction_J3 Junction_J4

J3_OVF

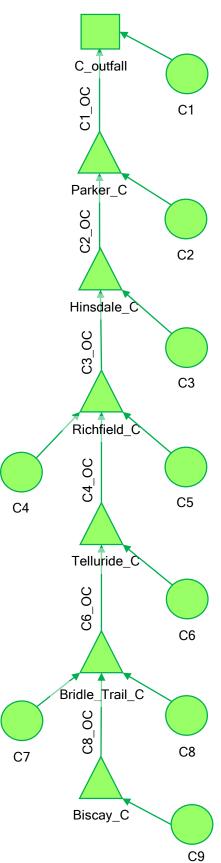
OVF

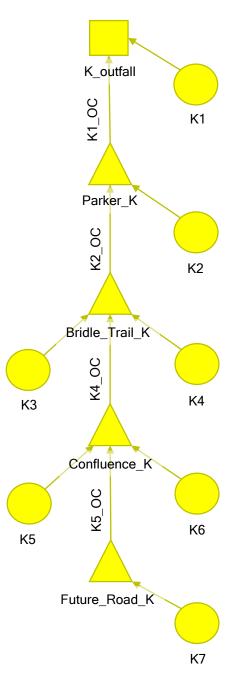

SS

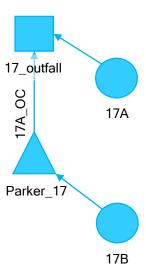
4


Shalom .

00

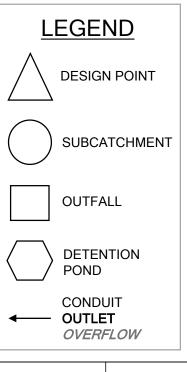
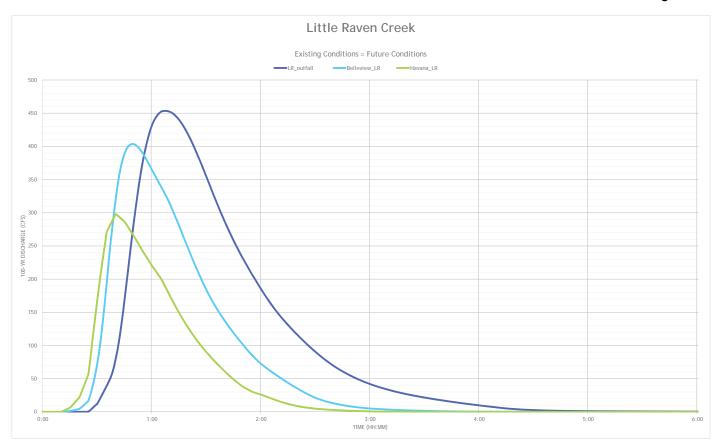
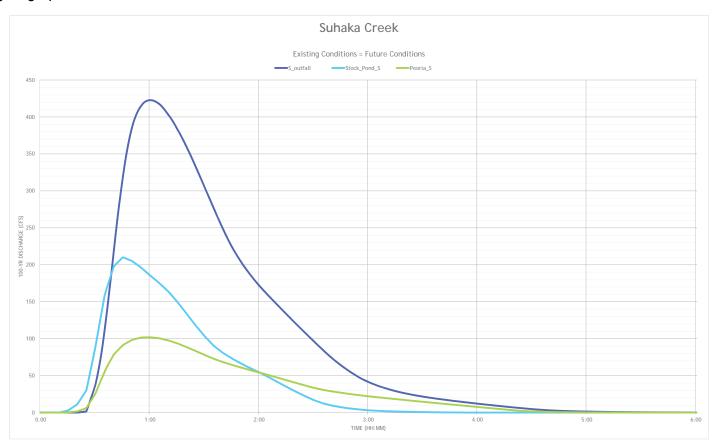

South Arapahoe Tributary


Tagawa Tributary


Chenango Tributary

Kragelund Tributary

17 Mile Tributary

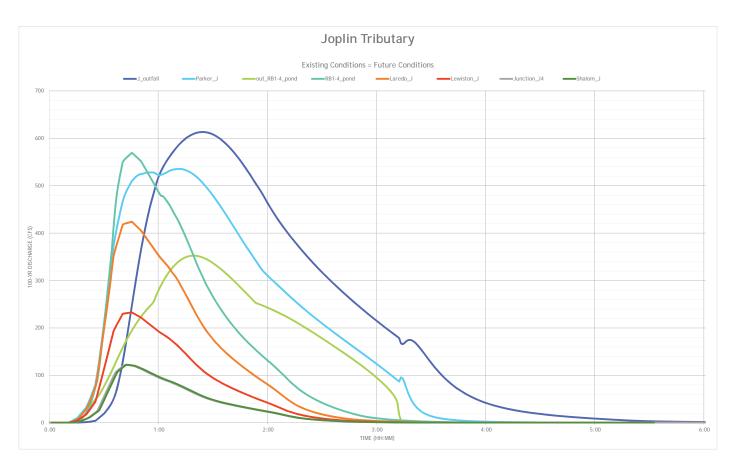


Figure B-4. Baseline Hydrographs

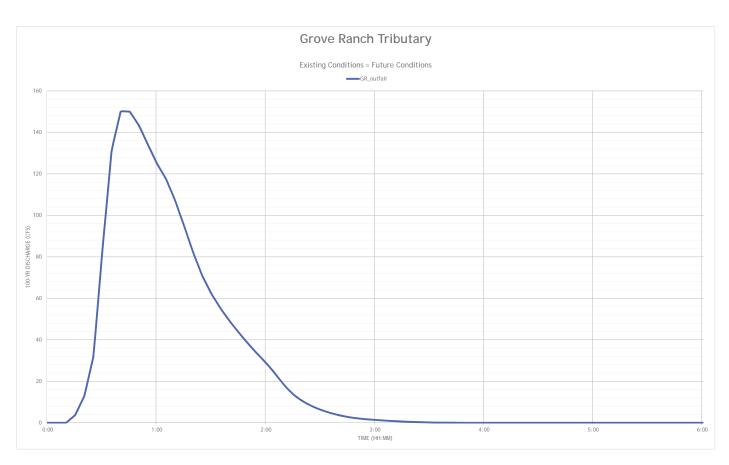
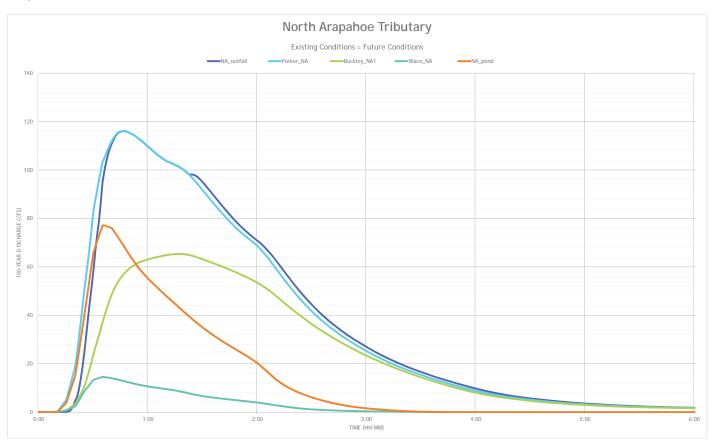
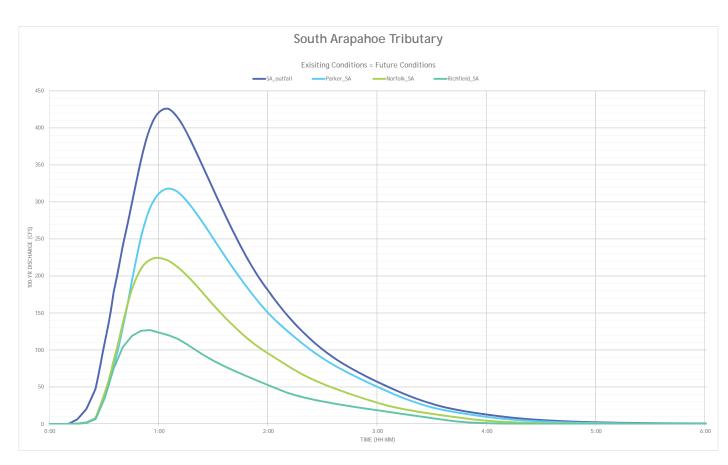




Figure B-4. Baseline Hydrographs

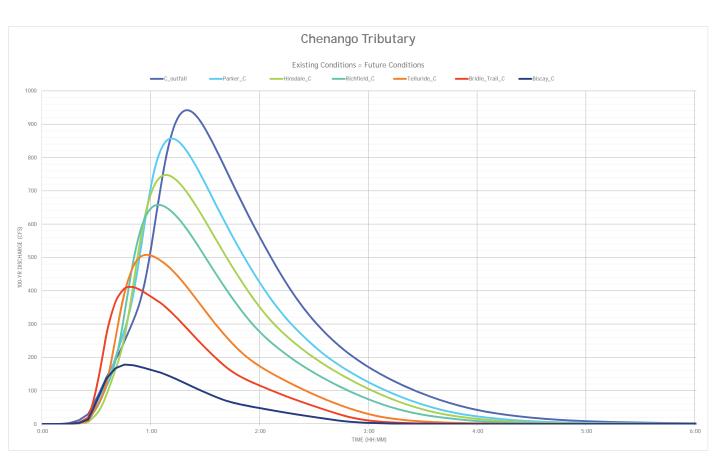
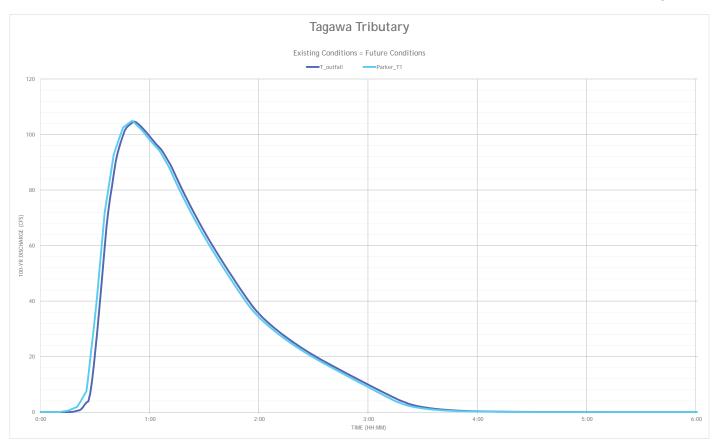
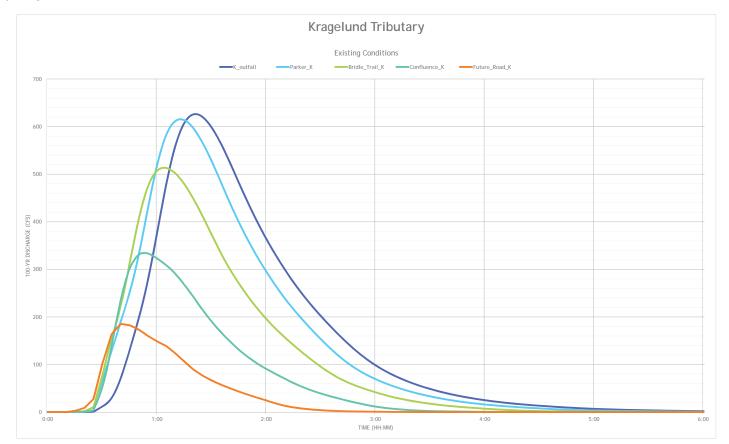
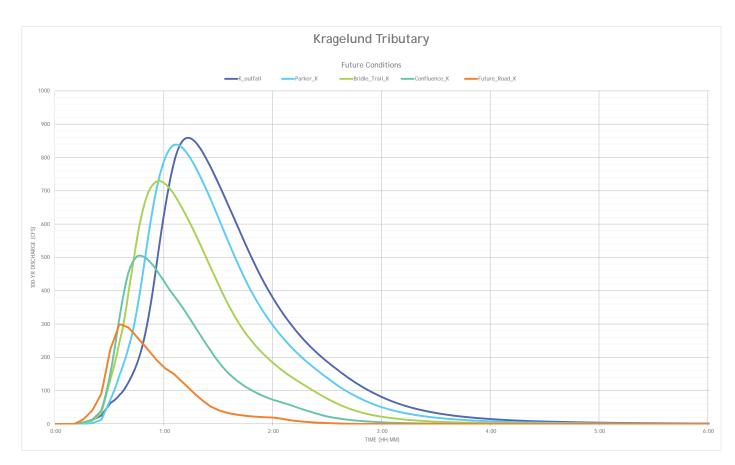





Figure B-4. Baseline Hydrographs

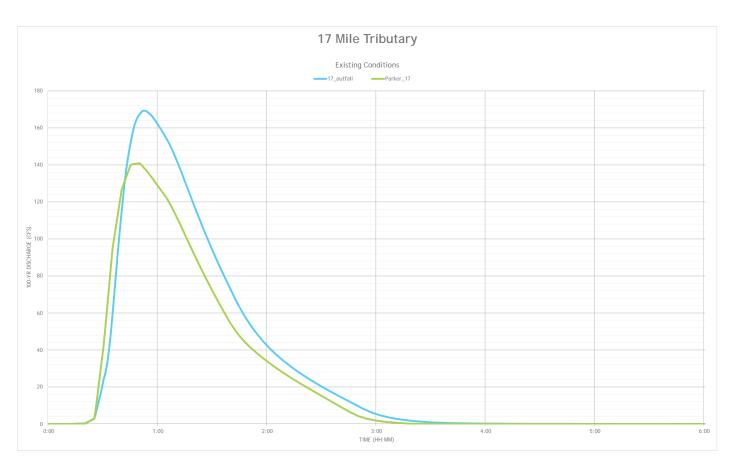


Figure B-4. Baseline Hydrographs

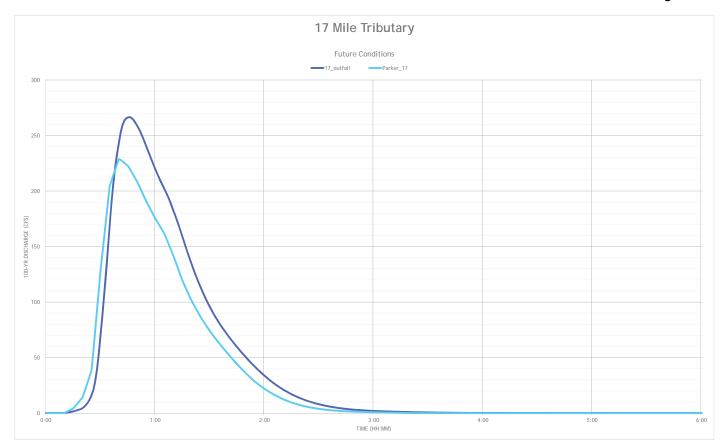
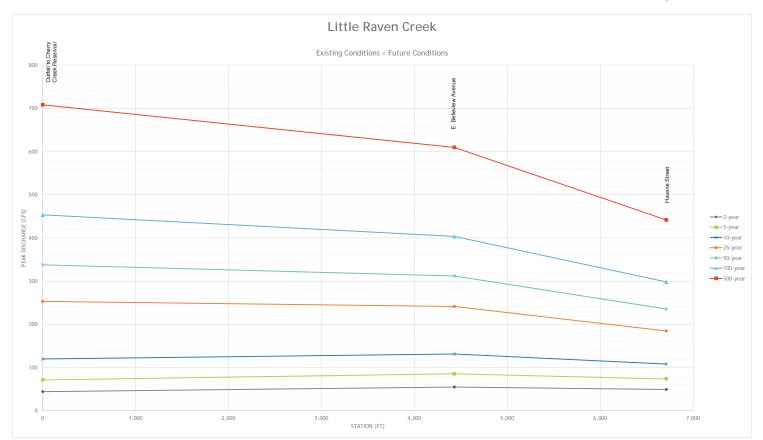
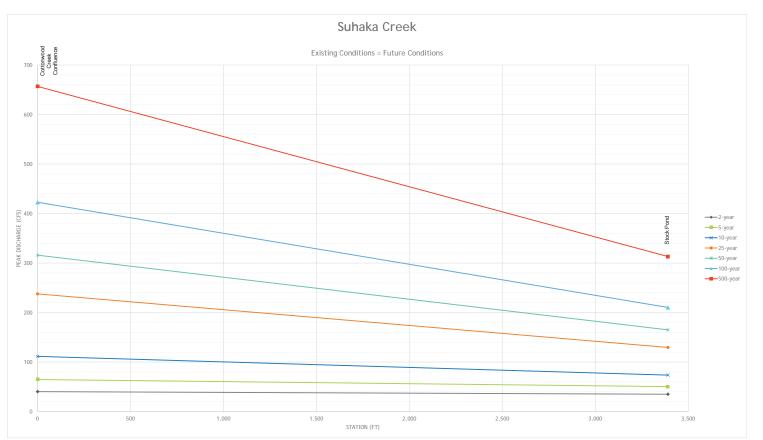
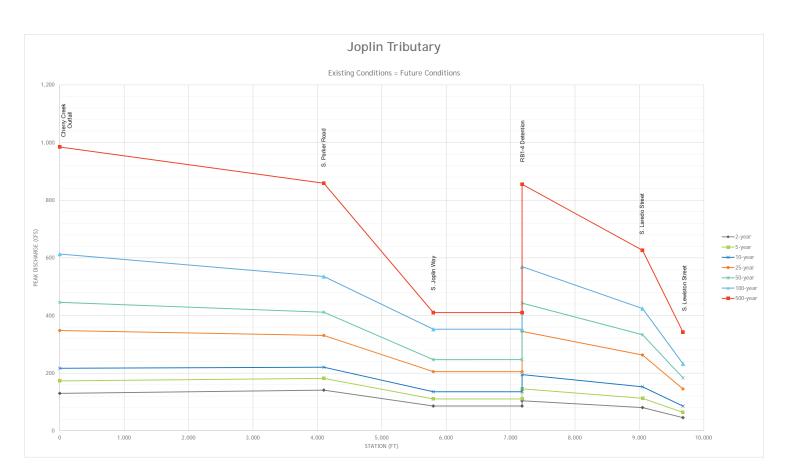





Figure B-5. Baseline Peak Flow Profiles

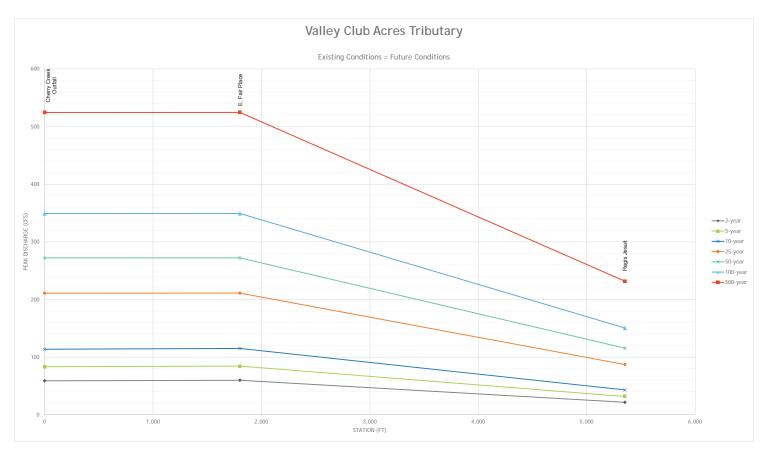
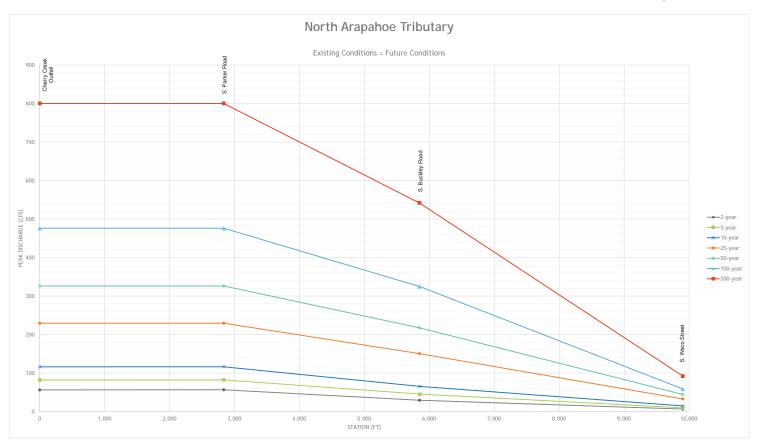
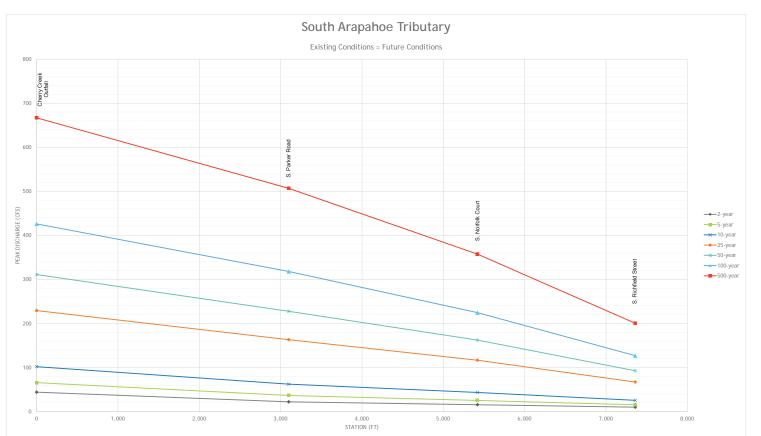
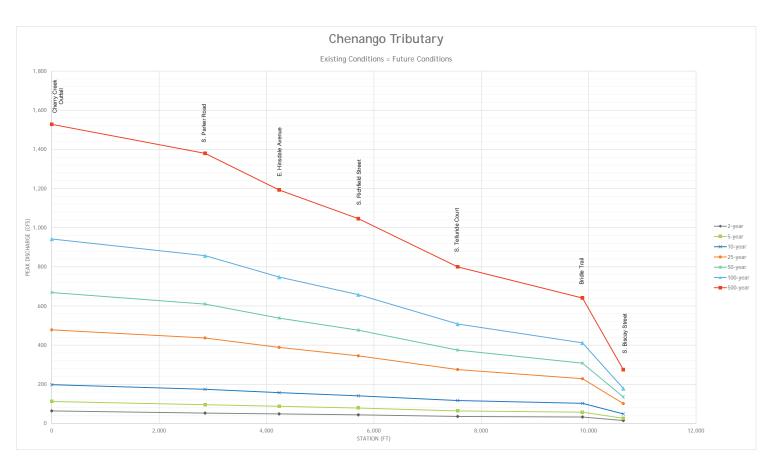





Figure B-5. Baseline Peak Flow Profiles

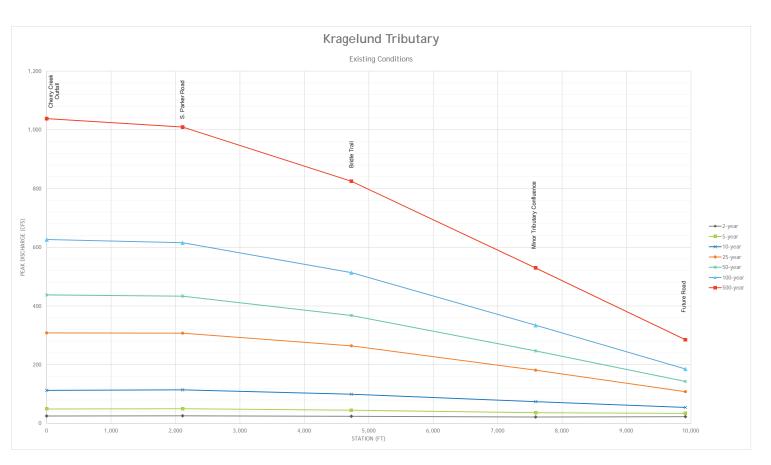
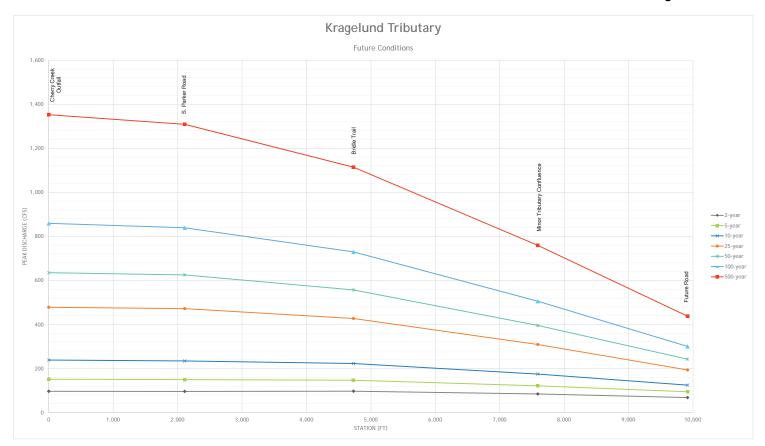



Figure B-5. Baseline Peak Flow Profiles

Comment	Cherry Creek	Trib Water Qual
1 Hr Depth	0.6	
Return Period	WQ	
Time	Depth	CurveValue
0:05	0.012	0.020
0:10	0.024	0.040
0:15	0.050	0.084
0:20	0.096	0.160
0:25	0.150	0.250
0:30	0.084	0.140
0:35	0.038	0.063
0:40	0.030	0.050
0:45	0.018	0.030
0:50	0.018	0.030
0:55	0.018	0.030
1:00	0.018	0.030
1:05	0.018	0.030
1:10	0.012	0.020
1:15	0.012	0.020
1:20	0.012	0.020
1:25	0.012	0.020
1:30	0.012	0.020
1:35	0.012	0.020
1:40	0.012	0.020
1:45	0.012	0.020
1:50	0.012	0.020
1:55	0.006	0.010
2:00	0.006	0.010
2:05	0.000	0.000

Comment	Cherry Creek	Trib 1YR
1 Hr Depth	0.721	
Return Period	1 Year*	
Time	Depth	CurveValue
0:05	0.014	0.020
0:10	0.029	0.040
0:15	0.061	0.084
0:20	0.115	0.160
0:25	0.180	0.250
0:30	0.101	0.140
0:35	0.045	0.063
0:40	0.036	0.050
0:45	0.022	0.030
0:50	0.022	0.030
0:55	0.022	0.030
1:00	0.022	0.030
1:05	0.022	0.030
1:10	0.014	0.020
1:15	0.014	0.020
1:20	0.014	0.020
1:25	0.014	0.020
1:30	0.014	0.020
1:35	0.014	0.020
1:40	0.014	0.020
1:45	0.014	0.020
1:50	0.014	0.020
1:55	0.007	0.010
2:00	0.007	0.010
2:05	0.000	0.000

Comment	Cherry Creek	Trib 2YR
1 Hr Depth	0.868	
Return Period	2 Years	
Time	Depth	CurveValue
0:05	0.017	0.020
0:10	0.035	0.040
0:15	0.073	0.084
0:20	0.139	0.160
0:25	0.217	0.250
0:30	0.122	0.140
0:35	0.055	0.063
0:40	0.043	0.050
0:45	0.026	0.030
0:50	0.026	0.030
0:55	0.026	0.030
1:00	0.026	0.030
1:05	0.026	0.030
1:10	0.017	0.020
1:15	0.017	0.020
1:20	0.017	0.020
1:25	0.017	0.020
1:30	0.017	0.020
1:35	0.017	0.020
1:40	0.017	0.020
1:45	0.017	0.020
1:50	0.017	0.020
1:55	0.009	0.010
2:00	0.009	0.010
2:05	0.000	0.000

Comment	Cherry Creek Trib 5YR	
1 Hr Depth	1.13	
Return Period	5 Years	
Time	Depth	CurveValue
0:05	0.023	0.020
0:10	0.042	0.037
0:15	0.098	0.087
0:20	0.173	0.153
0:25	0.283	0.250
0:30	0.147	0.130
0:35	0.066	0.058
0:40	0.050	0.044
0:45	0.041	0.036
0:50	0.041	0.036
0:55	0.034	0.030
1:00	0.034	0.030
1:05	0.034	0.030
1:10	0.034	0.030
1:15	0.028	0.025
1:20	0.025	0.022
1:25	0.025	0.022
1:30	0.025	0.022
1:35	0.025	0.022
1:40	0.017	0.015
1:45	0.017	0.015
1:50	0.017	0.015
1:55	0.017	0.015
2:00	0.015	0.013
2:05	0.000	0.000

Comment	Cherry Creek Trib 10YR	
1 Hr Depth	1.37	
Return Period	10 Years	
Time	Depth	CurveValue
0:05	0.027	0.020
0:10	0.051	0.037
0:15	0.112	0.082
0:20	0.206	0.150
0:25	0.343	0.250
0:30	0.164	0.120
0:35	0.077	0.056
0:40	0.059	0.043
0:45	0.052	0.038
0:50	0.044	0.032
0:55	0.044	0.032
1:00	0.044	0.032
1:05	0.044	0.032
1:10	0.044	0.032
1:15	0.044	0.032
1:20	0.034	0.025
1:25	0.026	0.019
1:30	0.026	0.019
1:35	0.026	0.019
1:40	0.026	0.019
1:45	0.026	0.019
1:50	0.026	0.019
1:55	0.023	0.017
2:00	0.018	0.013
2:05	0.000	0.000

^{*}The temporal distribution for the 1-hour, 1-year design storm was assumed to be the same as that used by the 2-year design storm distribution as prepared by CUHP and defined in UDSCM Volume 1 Table 5-2.

Comment	Cherry Creek	Trib 25YR
1 Hr Depth	1.73	
Return Period	25 Years	
Time	Depth	CurveValue
0:05	0.022	0.013
0:10	0.061	0.035
0:15	0.087	0.050
0:20	0.138	0.080
0:25	0.260	0.150
0:30	0.433	0.250
0:35	0.208	0.120
0:40	0.138	0.080
0:45	0.087	0.050
0:50	0.087	0.050
0:55	0.055	0.032
1:00	0.055	0.032
1:05	0.055	0.032
1:10	0.042	0.024
1:15	0.042	0.024
1:20	0.031	0.018
1:25	0.031	0.018
1:30	0.024	0.014
1:35	0.024	0.014
1:40	0.024	0.014
1:45	0.024	0.014
1:50	0.024	0.014
1:55	0.024	0.014
2:00	0.024	0.014
2:05	0.000	0.000

Comment	Cherry Creek	Trib 50YR
1 Hr Depth	2.03	
Return Period	50 Years	
Time	Depth	CurveValue
0:05	0.026	0.013
0:10	0.071	0.035
0:15	0.102	0.050
0:20	0.162	0.080
0:25	0.305	0.150
0:30	0.508	0.250
0:35	0.244	0.120
0:40	0.162	0.080
0:45	0.102	0.050
0:50	0.102	0.050
0:55	0.065	0.032
1:00	0.065	0.032
1:05	0.065	0.032
1:10	0.049	0.024
1:15	0.049	0.024
1:20	0.037	0.018
1:25	0.037	0.018
1:30	0.028	0.014
1:35	0.028	0.014
1:40	0.028	0.014
1:45	0.028	0.014
1:50	0.028	0.014
1:55	0.028	0.014
2:00	0.028	0.014
2:05	0.000	0.000

Comment	Cherry Creek	Trib 100YR
1 Hr Depth	2.36	
Return Period	100 Years	
Time	Depth	CurveValue
0:05	0.024	0.010
0:10	0.071	0.030
0:15	0.109	0.046
0:20	0.189	0.080
0:25	0.330	0.140
0:30	0.590	0.250
0:35	0.330	0.140
0:40	0.189	0.080
0:45	0.146	0.062
0:50	0.118	0.050
0:55	0.094	0.040
1:00	0.094	0.040
1:05	0.094	0.040
1:10	0.047	0.020
1:15	0.047	0.020
1:20	0.028	0.012
1:25	0.028	0.012
1:30	0.028	0.012
1:35	0.028	0.012
1:40	0.028	0.012
1:45	0.028	0.012
1:50	0.028	0.012
1:55	0.028	0.012
2:00	0.028	0.012
2:05	0.000	0.000

Comment	Cherry Creek	Trib 500YR
1 Hr Depth	3.21	
Return Period	500 Years	
Time	Depth	CurveValue
0:05	0.032	0.010
0:10	0.096	0.030
0:15	0.148	0.046
0:20	0.257	0.080
0:25	0.449	0.140
0:30	0.803	0.250
0:35	0.449	0.140
0:40	0.257	0.080
0:45	0.199	0.062
0:50	0.161	0.050
0:55	0.128	0.040
1:00	0.128	0.040
1:05	0.128	0.040
1:10	0.064	0.020
1:15	0.064	0.020
1:20	0.039	0.012
1:25	0.039	0.012
1:30	0.039	0.012
1:35	0.039	0.012
1:40	0.039	0.012
1:45	0.039	0.012
1:50	0.039	0.012
1:55	0.039	0.012
2:00	0.039	0.012
2:05	0.000	0.000

CUHP SUBCATCHMENTS

									Storage	Depression (Watershed ches)	Horton's Infiltration Parameters		DCIA	
Subcatchment Name	EPA SWMM Target Node	Area (mi ²)	Area (acres)	Length to Centroid (mi)	Length (mi)	Slope (ft/ft)	% Imprv (Existing)	% Imprv (Future)	Pervious	Impervious	Initial Rate (in/hr)	Decay Coefficient (1/seconds)	Final Rate (in/hr)	Level 0, 1, or 2
17A	17A	0.03	21.8	0.10	0.22	0.034	13.68	36.05	0.40	0.10	3.645	0.0017	0.561	0
17B	17B	0.19	123.7	0.38	0.74	0.046	6.62	36.21	0.40	0.10	4.489	0.0018	0.599	0
NA1	NA1	0.16	99.8	0.38	0.81	0.030		50.61	0.40	0.10	4.385	0.0018	0.592	0
NA2	NA2	0.20	127.8	0.44	0.82	0.017		44.93	0.40	0.10	4.500	0.0018	0.600	0
NA3	NA3	0.16	102.9	0.86	1.39	0.021		40.69	0.40	0.10	4.582	0.0016	0.665	0
NA4	NA4	0.06	41.3	0.18	0.48	0.029		28.24	0.40	0.10	4.545	0.0017	0.636	0
SA1	SA1	0.11	70.1	0.40	0.74	0.022		69.54	0.40	0.10	3.344	0.0018	0.523	0
SA2	SA2	0.15	98.5	0.40	0.94	0.027		24.33	0.40	0.10	4.500	0.0018	0.600	0
SA3	SA3	0.15	94.8	0.33	0.73	0.024		20.01	0.40	0.10	4.500	0.0018	0.600	0
SA4	SA4	0.21	132.2	0.40	1.22	0.024		20.01	0.40	0.10	4.532	0.0017	0.625	0
C1	C1	0.17	106.2	0.55	0.97	0.021		49.45	0.40	0.10	3.737	0.0017	0.589	0
C2	C2	0.18	117.0	0.30	0.71	0.031		18.67	0.40	0.10	4.500	0.0018	0.600	0
C3	C3	0.16	101.5	0.42	0.93	0.024		20.00	0.40	0.10	4.209	0.0018	0.581	0
C4	C4	0.20	125.6	0.59	1.13	0.031		20.00	0.40	0.10	4.614	0.0015	0.700	0
C5	C5	0.09	54.7	0.36	0.64	0.036		20.00	0.40	0.10	3.130	0.0018	0.509	0
C6	C6	0.14	91.7	0.32	0.66	0.039		20.00	0.40	0.10	3.346	0.0017	0.560	0
C7	C7	0.11	72.1	0.38	0.64	0.052		20.00	0.40	0.10	3.780	0.0014	0.695	0
C8	C8	0.18	116.1	0.46	0.70	0.051		20.00	0.40	0.10	3.000	0.0018	0.500	0
C 9	C 9	0.21	132.2	0.42	0.83	0.048		20.00	0.40	0.10	3.002	0.0018	0.500	0
GR1	GR1	0.13	80.7	0.38	0.84	0.017		53.51	0.40	0.10	3.472	0.0018	0.544	0
J1	J1	0.19	119.8	0.64	1.13	0.015		2.66	0.40	0.10	3.885	0.0015	0.674	0
J2	J2	0.08	50.9	0.44	0.77	0.033		28.20	0.40	0.10	4.825	0.0010	0.880	0
J3	J3	0.17	106.0	0.36	0.89	0.028		54.12	0.40	0.10	4.804	0.0011	0.844	0
J4	J4	0.07	45.2	0.20	0.47	0.030		42.83	0.40	0.10	5.000	0.0007	1.000	0
J5	J5	0.16	100.6	0.37	0.81	0.028		40.67	0.40	0.10	4.994	0.0007	0.995	0
J6	J6	0.18	117.2	0.51	1.07	0.017		42.07	0.40	0.10	4.743	0.0013	0.794	0
J7	J7	0.17	108.5	0.48	0.77	0.017		48.05	0.40	0.10	4.503	0.0018	0.602	0
J8	J8	0.20	125.9	0.49	0.87	0.018		51.70	0.40	0.10	4.500	0.0018	0.600	0
LR3	LR3	0.22	140.0	0.35	0.77	0.028		42.47	0.40	0.10	3.000	0.0018	0.500	0
LR2	LR2	0.13	84.7	0.27	0.64	0.025		28.12	0.40	0.10	3.000	0.0018	0.500	0
LR1	LR1	0.19	123.9	0.50	0.99	0.019		2.08	0.40	0.10	3.238	0.0017	0.541	0
K1	K1	0.05	33.6	0.19	0.40	0.022	5.91	59.45	0.40	0.10	3.833	0.0013	0.707	0
K2	K2	0.19	124.3	0.27	0.75	0.027	15.79	18.49	0.40	0.10	3.659	0.0018	0.544	0
К3	К3	0.11	69.2	0.44	0.93	0.035	2.00	38.48	0.40	0.10	3.692	0.0018	0.546	0
K4	K4	0.20	126.4	0.38	0.69	0.042	14.57	22.98	0.40	0.10	3.029	0.0018	0.502	0

Table B-2. CUHP Subcatchment Input Data

									Maximum Depression Storage (Watershed Horton's Infiltration Parameters inches)				DCIA	
Subcatchment Name	EPA SWMM Target Node	Area (mi²)	Area (acres)	Length to Centroid (mi)	Length (mi)	Slope (ft/ft)	% Imprv (Existing)	% Imprv (Future)	Pervious	Impervious	Initial Rate (in/hr)	Decay Coefficient (1/seconds)	Final Rate (in/hr)	Level 0, 1, or 2
K5	K5	0.07	45.3	0.30	0.53	0.041	4.22	44.80	0.40	0.10	3.545	0.0018	0.536	0
K6	K6	0.16	104.2	0.39	0.79	0.052	7.43	28.42	0.40	0.10	3.322	0.0018	0.521	0
K7	K7	0.17	107.9	0.36	0.72	0.052	31.70	59.55	0.40	0.10	4.005	0.0018	0.567	0
S1	S1	0.19	120.5	0.31	0.70	0.022		4.19	0.40	0.10	3.183	0.0018	0.512	0
S2	S2	0.17	108.6	0.63	1.11	0.021		26.75	0.40	0.10	3.129	0.0018	0.514	0
S 3	S3	0.20	130.7	0.49	1.16	0.024		43.13	0.40	0.10	3.114	0.0017	0.529	0
VCA1	VCA1	0.19	120.2	0.42	1.03	0.010		51.33	0.40	0.10	4.275	0.0018	0.585	0
VCA2	VCA2	0.14	86.7	0.35	0.61	0.036		37.29	0.40	0.10	4.581	0.0016	0.665	0
T1	T1	0.17	74.2	0.38	1.02	0.033		21.88	0.40	0.10	4.202	0.0013	0.732	0

North Arapahoe Detention Pond ¹ (i.e. Pond E) Design Point: NA_pond

Stage-Storage							
Elevation	Depth (ft)	Area (SF)	Storage (AF)				
5764.6	0.0	2,015	0.00				
5765	0.4	4,029	0.03				
5766	1.4	7,745	0.16				
5767	2.4	13,713	0.41				
5768	3.4	19,405	0.79				
5769	4.4	28,097	1.33				
5770	5.4	47,234	2.20				
5771	6.4	60,011	3.43				
5772	7.4	65,787	4.87				
5773	8.4	65,787	6.38				
5774	9.4	65,787	7.89				

^{1.} A detention rating curve was originally developed from as-built drawings prepared on May 4, 2000 by Aztec and P.R. Fletcher & Associates. However, 2014 LiDAR of the pond data varies significantly from the as-built data and new stage-storagedischarge curves were defined using survey data collected by UDFCD in February 2019. See Section 3.4 DETENTION for more detail.

Depth (ft)	Total Discharge (cfs)
0.0	0.0
0.25	0.1
0.5	0.2
0.75	0.2
1.0	0.3
1.25	0.4
1.5	0.5
1.75	0.5
2.0	0.6
2.25	0.7
2.5	0.8
2.75	0.9
3.0	0.9
3.25	1.0
3.5	1.1
3.75	1.4
4.0	2.2
4.25	3.4
4.5	5.1
4.75	7.0
5.0	9.4
5.25	12.1
5.5	15.1
5.75	18.4
6.0	22.1
6.25	26.1
6.5	30.4
6.75	34.2
7.0	36.6
7.25	45.9
7.5	61.5
7.75	81.1
8.0	100.5
8.25	122.4
8.5	173.3
8.75	239.3
9.0	317.3
9.25	405.5
9.4	464.3

Stage-Discharge

RB1-4 Detention Pond ¹
Design Point: RB1-4_pond

Stage-Storage							
Elevation	Depth (ft)	Area (SF)	Storage (AF)				
5687.5	0	0	0.00				
5688	0.5	328	0.00				
5689	1.5	2,222	0.03				
5690	2.5	22,311	0.31				
5691	3.5	41,170	1.04				
5692	4.5	60,321	2.21				
5693	5.5	75,858	3.77				
5694	6.5	86,332	5.63				
5695	7.5	95,521	7.72				
5696	8.5	104,107	10.01				
5697	9.5	112,990	12.50				
5698	10.5	121,937	15.20				
5699	11.5	131,448	18.11				

Stage-Discharge					
Depth (ft)	Total Discharge (cfs)				
0	0				
9.4	253				
11.5	410				
11.6	800				

^{2.} Cells highlighted in red are above the surveyed pond top of berm but were included in the Baseline Hydrology SWMM model for continuity of the larger flow events.

^{1.} The detention rating curve was developed from as-built drawings prepared for East Cherry Creek Valley (ECCV) Water and Sanitation District on April 28, 1994 (Muller Engineering Co.). The asbuilt data is assumed to be correct and supersedes data presented in the November 1989 Muller Engineering drainage report.

RB1-4 REGIONAL DETENTION BASIN INFORMATION

BASN RB1-PON DRAINAGE IMPROVEMENTS

APRIL, 1994

GENERAL NOTES:

1. THE DIRECTOR, DEPARTMENT OF HIGHWAYS/ENGINEERING (COUNTY ENGINEER) STAMP AND SIGNATURE AFFIXED TO THIS DOCUMENT INDICATES THE DEPARTMENT OF HIGHWAYS/ENGINEERING HAS REVIEWED THE DOCUMENT AND FOUND IT IN GENERAL CONFORMANCE WITH THE ARAPAHOE COUNTY SUBDIVISION REGULATIONS, OR APPROVED VARIANCES TO THOSE REGULATIONS. THE DIRECTOR, DONE THROUGH APPROVAL OF THIS DOCUMENT, ASSUMES NO RESPONSIBILITY, OTHER THAN STATED ABOVE, FOR THE COMPLETENESS AND/OR ACCURACY OF THESE DOCUMENTS. THE COUNTY DOES NOT ACCEPT THE LIABILITY FOR FACILITIES DESIGNED BY OTHERS.

2. ALL MATERIALS AND WORKMANSHIP FOR WORK INDICATED "TO BE MAINTAINED BY ARAPAHOE COUNTY SHALL BE SUBJECT TO INSPECTION BY THE ARAPAHOE COUNTY DEPARTMENT OF HIGHWAYS/ENGINEERING. THE COUNTY RESERVES THE RIGHT TO ACCEPT OR REJECT ANY SUCH MATERIALS AND WORKMANSHIP THAT DOES NOT CONFORM TO ITS STANDARDS AND SPECIFICATIONS. CONCRETE SHALL NOT BE PLACED UNTIL A POUR SLIP HAS BEEN ISSUED. POUR SLIPS WILL NOT BE ISSUED UNLESS THE CONTRACTOR HAS, AT THE JOB SITE, A COPY OF THE APPROVED PLANS BEARING THE SIGNATURE OF THE DIRECTOR, DOHE. IF AN ARAPAHOE COUNTY ENGINEERING INSPECTOR IS NOT AVAILABLE AFTER PROPER NOTICE OF CONSTRUCTION ACTIVITY HAS BEEN PROVIDED THE PERMITTEE MAY COMMENCE WORK WITHOUT A POUR SLIP. HOWEVER, ARAPAHOE COUNTY RESERVES THE RIGHT NOT TO ACCEPT THE STRUCTURE IF SUBSEQUENT TESTING REVEALS AN IMPROPER INSTALLATION.

3. THE CONTRACTOR SHALL NOTIFY THE ARAPAHOE COUNTY DEPARTMENT OF HIGHWAYS/ENGINEERING INSPECTION SECTION, TELEPHONE NUMBER 795-4640 A MINIMUM OF 48 HOURS AND A MAXIMUM OF 96 HOURS PRIOR TO STARTING CONSTRUCTION.

4. THE CONTRACTOR SHALL HAVE ONE (1) SIGNED COPY OF THE PLANS (APPROVED BY THE DEPARTMENT OF HIGHWAYS/ENGINEERING) AT THE JOB SITE AT ALL TIMES.

5. THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE ACCEPTANCE AND CONTROL OF ALL FLOWS, IN AND ENTERING ALL DRAINAGE FACILITIES AFFECTED BY THIS PROJECT. THE CONTRACTOR SHALL BE RESPONSIBLE FOR TAKING REASONABLE STEPS THROUGH DIKING, DIVERSION PONDING, CONTROL OF EQUIPMENT OPERATIONS AND CONSTRUCTION OF SILT CAPTURING BASINS AS DETAILED ON THE PLANS TO PREVENT POLLUTION OF CHERRY CREEK.

6. LOCATIONS OF UTILITIES REPRESENT THE BEST-KNOWN LOCATIONS AT THE TIME OF PREPARATION OF DRAWINGS. THE CONTRACTOR SHALL FIELD-LOCATE ALL UTILITIES IN ADVANCE OF EXCAVATION. RELOCATION OF UTILITIES MAY OR MAY NOT BE NEEDED AFTER THEY ARE EXPOSED. ACTUAL RELOCATION OF LINES WILL NOT BE THE RESPONSIBILITY OF THE CONTRACTOR; BUT THE CONTRACTOR SHALL COOPERATE WITH UTILITY COMPANIES TO COORDINATE THE RELOCATION EFFORT. LINES NOT RELOCATED SHALL BE PROTECTED BY THE CONTRACTOR IN PLACE. NO ADDITIONAL PAYMENT WILL BE ALLOWED FOR THE MINOR ADJUSTMENT OF STRUCTURES IN ORDER TO CLEAR A CONFLICTING UTILITY! CONTACT UTILITY COMPANIES 48 HOURS IN ADVANCE WHEN WORKING ADJACENT TO THE UTILITY.


> U.S. WEST (TELEPHONE) 534-6700 PUBLIC SERVICE (GAS) 534-6700 INTERMOUNTAIN REA (ELECTRIC) 688-3100 WYCO PIPELINE CO. (GAS) 690-8721 EAST CHERRY CREEK VALLEY WATER 693-3800 AND SANITATION DISTRICT(WATER

7. ALL EXPOSED CONCRETE SHALL HAVE A CLASS 2 OR CLASS 5 FINISH. ALL EXPOSED CONCRETE CORNERS SHALL HAVE A 3/4" X 3/4" CHAMFER. CONCRETE IN ALL STRUCTURES EXCEPT FOR THE LOW FLOW CHANNEL AND MANHOLE BASES SHALL BE CLASS CONCRETE IN THE LOW FLOW CHANNEL AND MANHOLE BASES MAY BE CLASS

- 8. ALL REINFORCING STEEL SHALL BE GRADE 60.
- 9. ALL CONCRETE PIPE SHALL BE ASTM C76, CLASS III, UNLESS OTHERWISE SHOWN.
- ALL JOINTS ARE SEALANT JOINTS.

AND SEWER)

- 10. SOIL COMPACTION REQUIREMENTS BENEATH CONCRETE STRUCTURES ARE 100% OF THE MAXIMUM DRY DENSITY MEASURED IN ACCORDANCE WITH ASTM D698. SOILS WITHIN REMAINDER OF THE PROJECT SHALL BE COMPACTED TO 95% OF THE MAXIMUM DRY DENSITY, MEASURED AS REFERENCED.
- 11. CONCRETE SIDEWALK AND CURB AND GUTTER SHALL BE REMOVED AT A JOINT IF THE JOINT IS LESS THAN FOUR FEET FROM A LENGTH TO BE REMOVED.
- 12. THE CONSTRUCTION WORK AREA IS LIMITED TO THE PUBLIC RIGHT-OF-WAY AND EASEMENTS SHOWN ON THE DRAWINGS. ALL AREAS DISTURBED SHALL BE REVEGETATED WITH NATIVE GRASSES, UNLESS OTHERWISE SHOWN ON THE DRAWINGS. SEE SPECIFICATIONS REGARDING SOIL PREPARATION AND SEEDING DETAILS.
- 13. CONTRACTOR TO OBTAIN APPROPRIATE COUNTY PERMITS TO ADDRESS TRAFFIC CONTROL, RIGHT OF WAY USE, ETC.

LOCATION MAP

SHEET INDEX

TITLE SHEET NO. TITLE SHEET GENERAL PLAN MISCELLANEOUS DETAILS POND 4 PROFILE & HEADWALL DETAILS POND 4 OUTLET BOX DETAILS

- CROSS SECTIONS
- WATER AND SANITARY SEWER PLAN AND PROFILE AND DETAILS
- FILL AREAS

PREPARED BY:

MULLER ENGINEERING CO., INC.

CONSULTING ENGINEERS IRONGATE 4, SUITE 100 777 S. WADSWORTH BLVD. LAKEWOOD, COLORADO 80226 (303) 988-4939

"I HEARBY AFFIRM THAT THESE FINAL CONSTRUCTION PLANS FOR THE CHERRY CREEK IMPROVEMENTS AT BASIN RB1 WERE PREPARED UNDER MY DIRECT SUPERVISION IN ACCORDANCE WITH THE REQUIREMENTS OF THE ROADWAY DESIGN AND CONSTRUCTION STANDARDS AND THE STORM DRAINAGE DESIGN AND TECHNICAL CRITERIA OF ARAPAHOE COUNTY AS AMENDED AND AGREED TO BY THE INTERGOVERNMENTAL AGREEMENT BETWEEN ECCV W&S DISTRICT AND ARAPAHOE COUNTY."

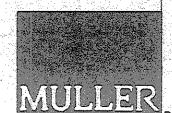
MICHAEL S. DUNGAN, P.E. PROJECT MANAGER MULLER ENGINEERING COMPANY, INC. DISTRICT MANAGER

PREPARED FOR:

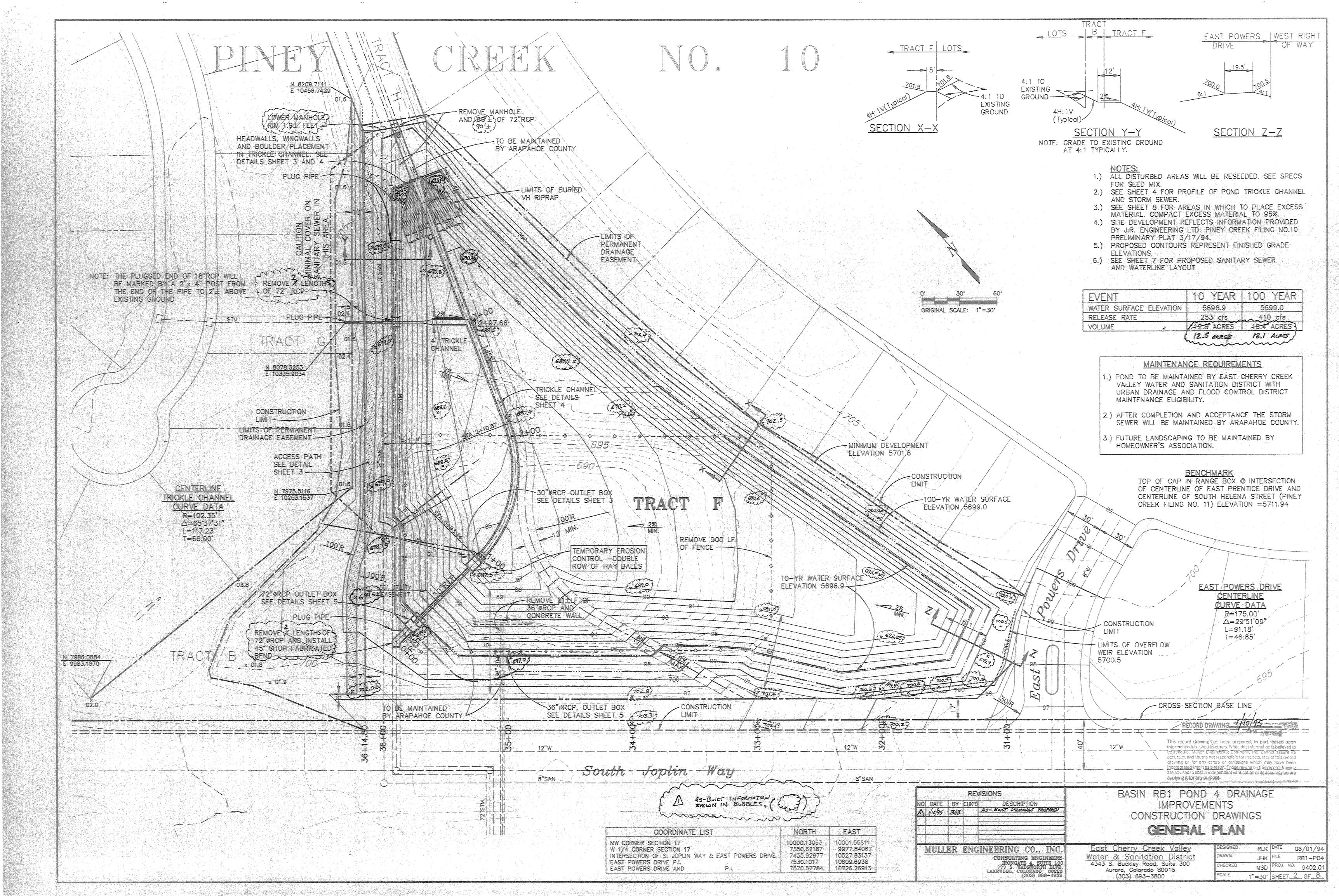
EAST CHERRY CREEK VALLEY WATER AND SANITATION DISTRICT

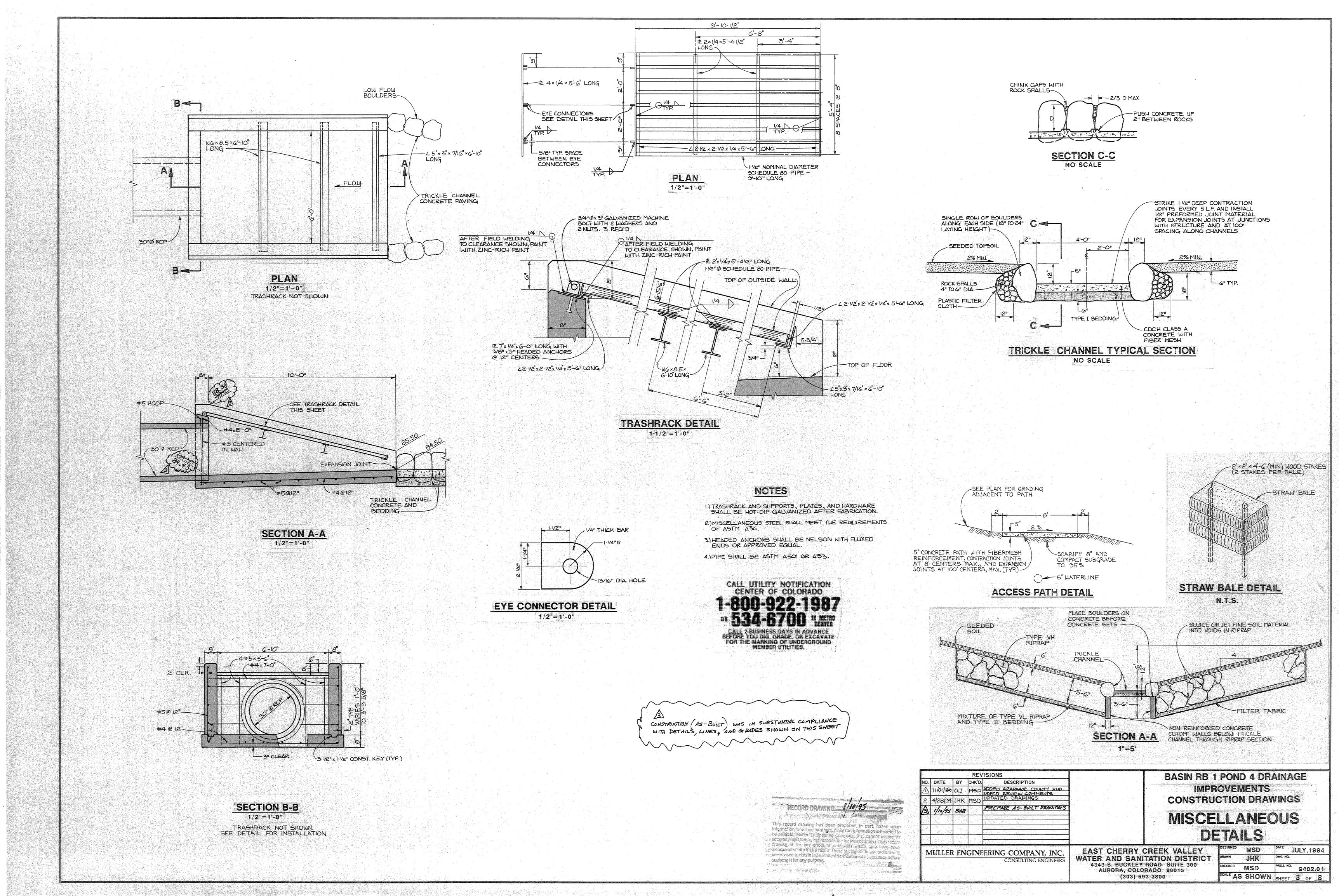
REVIEWED FOR EAST CHERRY CREEK VALLEY AND SANITATION DISTRICT

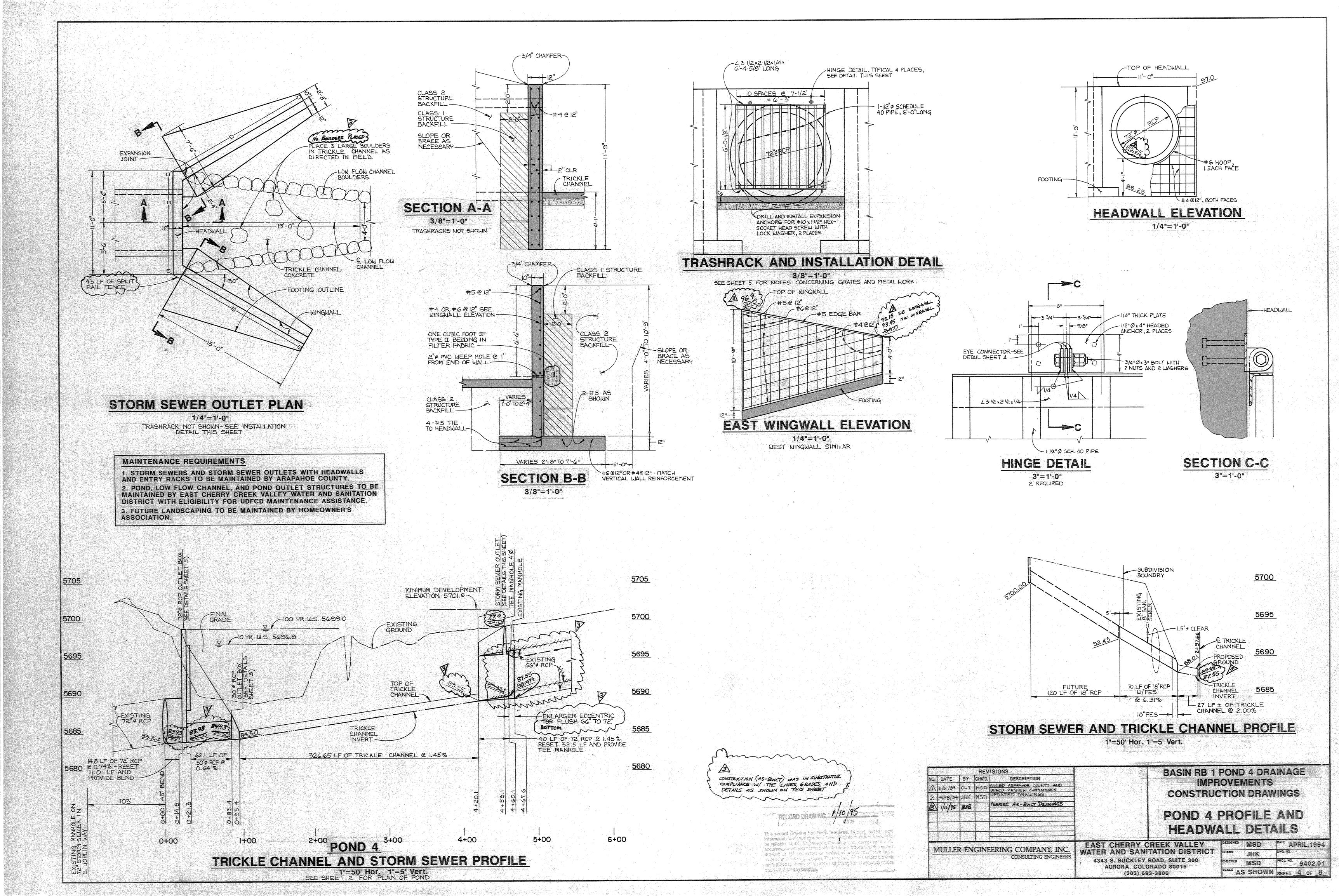
" To the best of my knowledge, belief, and opinion, the drainage facilities were constructed in accordance with the design intent of the approved drainage report and construction drawings."

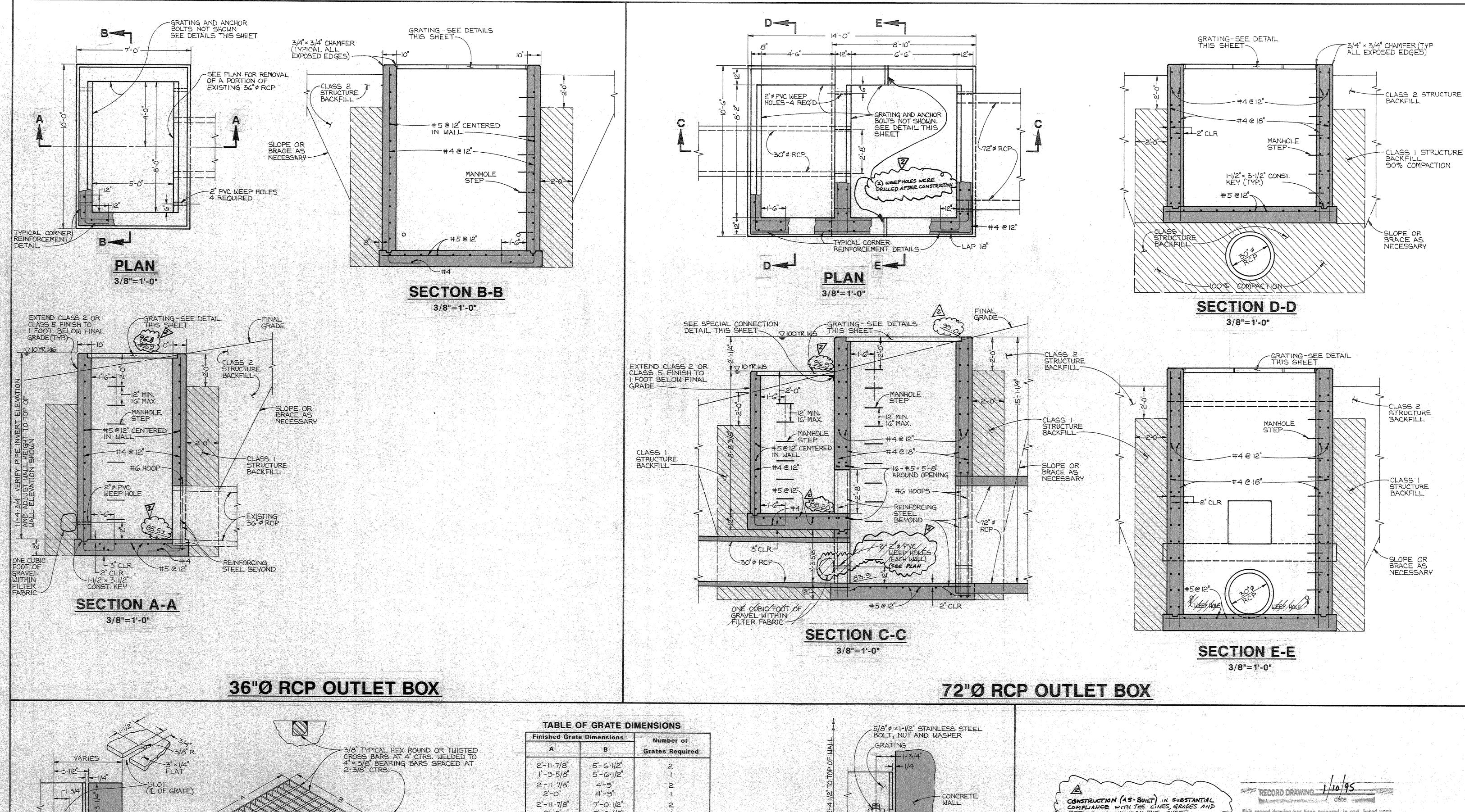

Michael S. Dungan P.E., Project Manager Muller Engineering Company Inc.

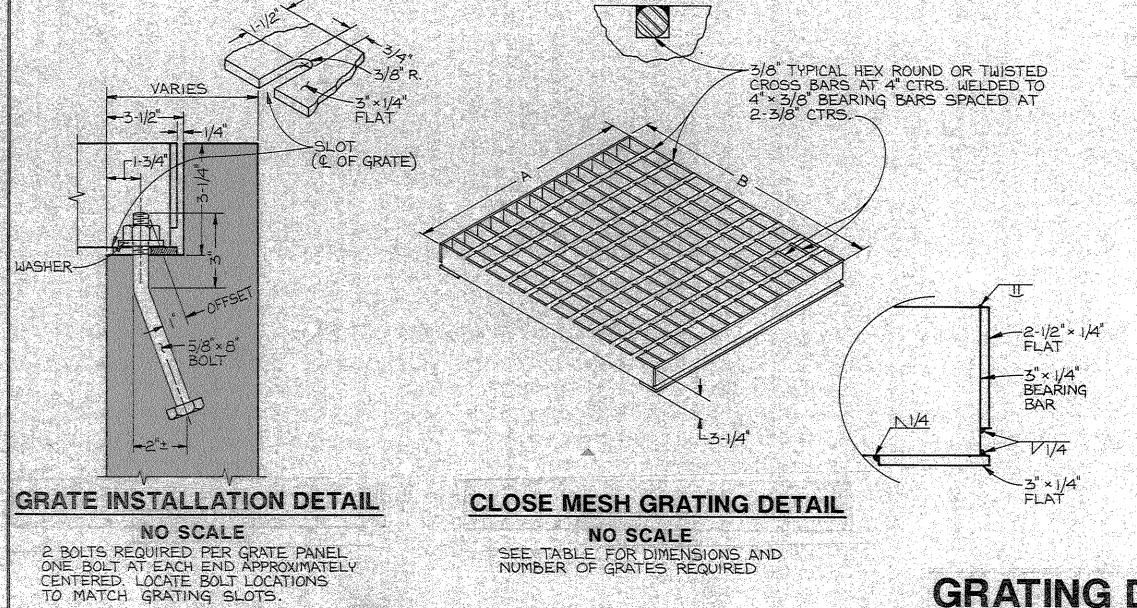
2/28/95

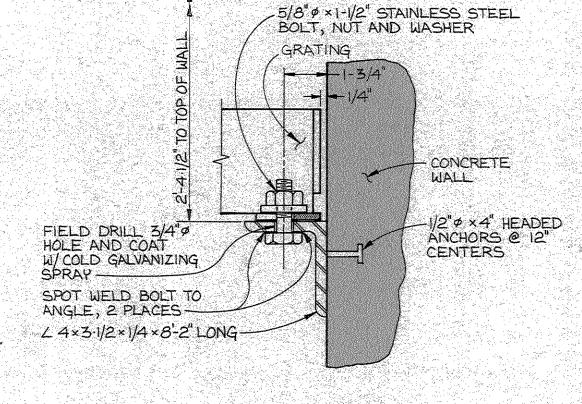

This record drawing has been prepared, in part, based upon


information furnished by others. While this information is believed to be reliable, Muller Engineering Company, Inc. cannot assure its occuracy, and thus is not responsible for the accuracy of this record clawing or for any errors or omissions which may have been incorporated into it as a result. Those relying on this record drawing are advised to obtain independent verification of its accuracy before applying it for any purpose,

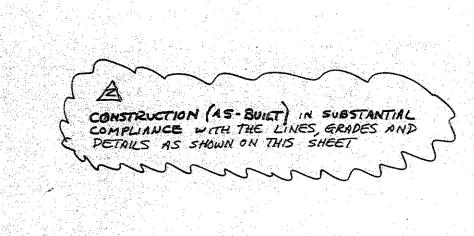

RB1-POND 4 DRAINAGE IMPROVEMENTS MEC PROJECT NO. 9402 SHEET 1 OF 8




DEPARTMENT OF HIGHWAY/ENGINEERING APPROVAL BLOCK



	Finished Grat	e Dimensions	Number of
	and the second s	Barren and the contract of the	
milel	time (it constitutes) i constant presidente di terres del prime del minergo (por primer) and del de mos aprophi	and provides consider antiques of high deposit for a part of the constant of constant of the c	Grates Required
	2'-11:7/8"	5'-G1/2"	
	2 11 1/0 1'-9:5/8" =	5'-6-1/2"	
3/	2'-11:7 /8 "	4'-9"	2
	2'-0"	4'-9'	
	2'-11-7/8"	7'-0:1/2"	
	2'-0"	7-0-1/2"	


NOTES:

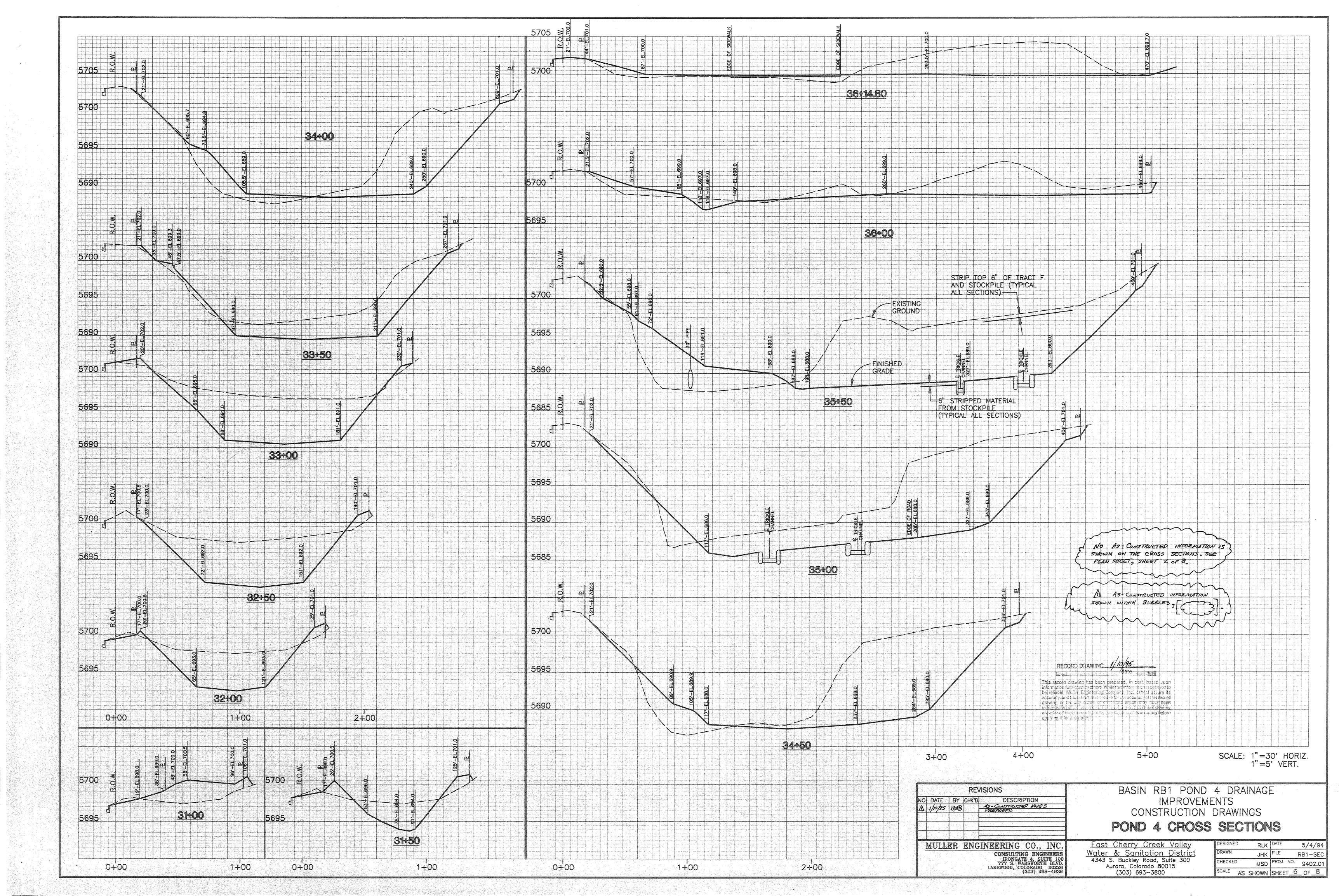
GRATING DETAILS

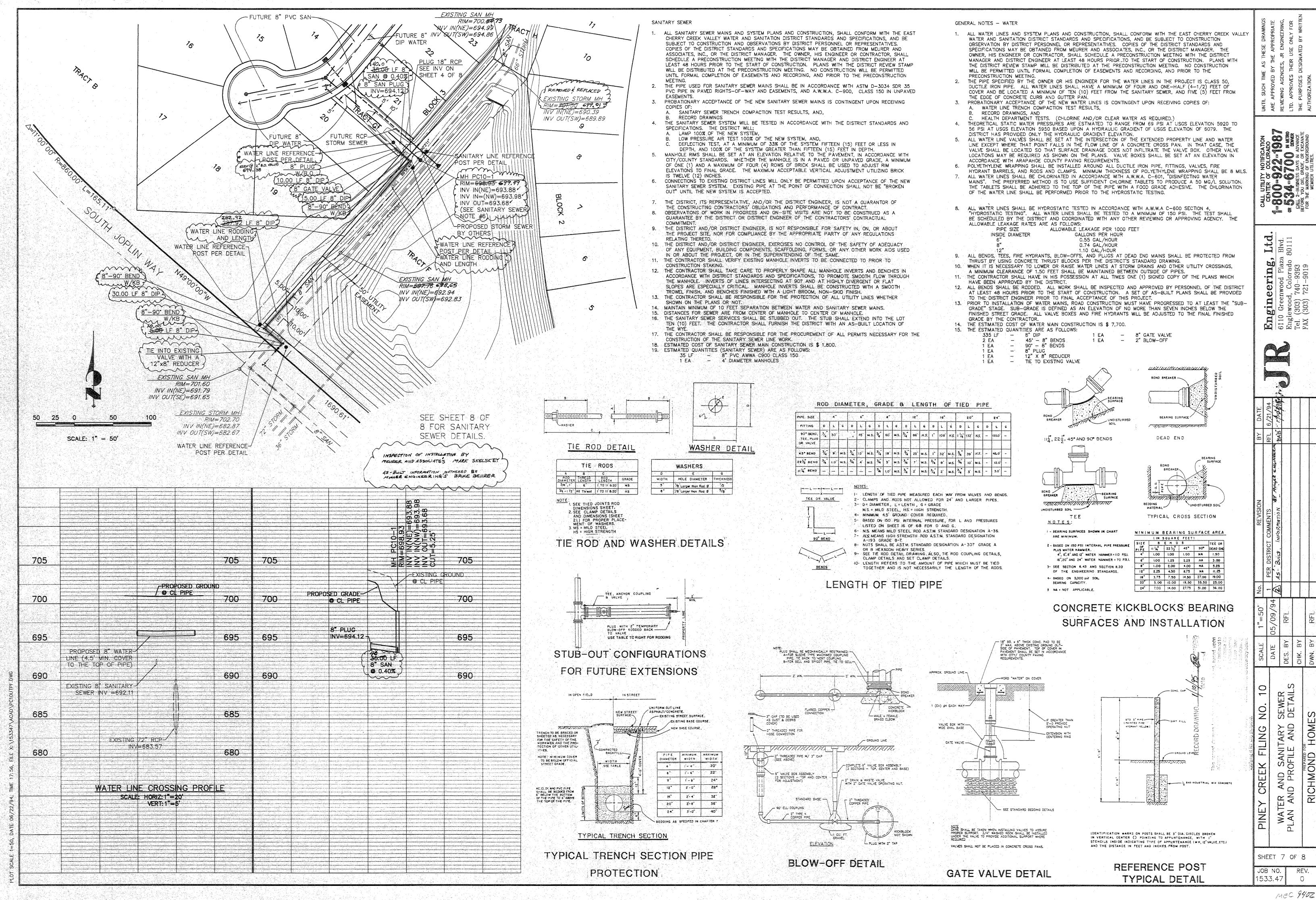
- I. FIELD VERIFY DIMENSIONS BEFORE ORDERING GRATING
- 2. GRATING AND ALL SUPPORTS, PLATES AND HARDWARE SHALL BE HOT-DIP GALVANIZED AFTER FABRICATION.
- 3. MISCELLANEOUS STEEL SHALL MEET THE REQUIREMENTS OF ASTM A36.
- 4 PIPE SHALL MEET THE REQUIREMENTS OF ASTM A53, GRADE B OR A50L

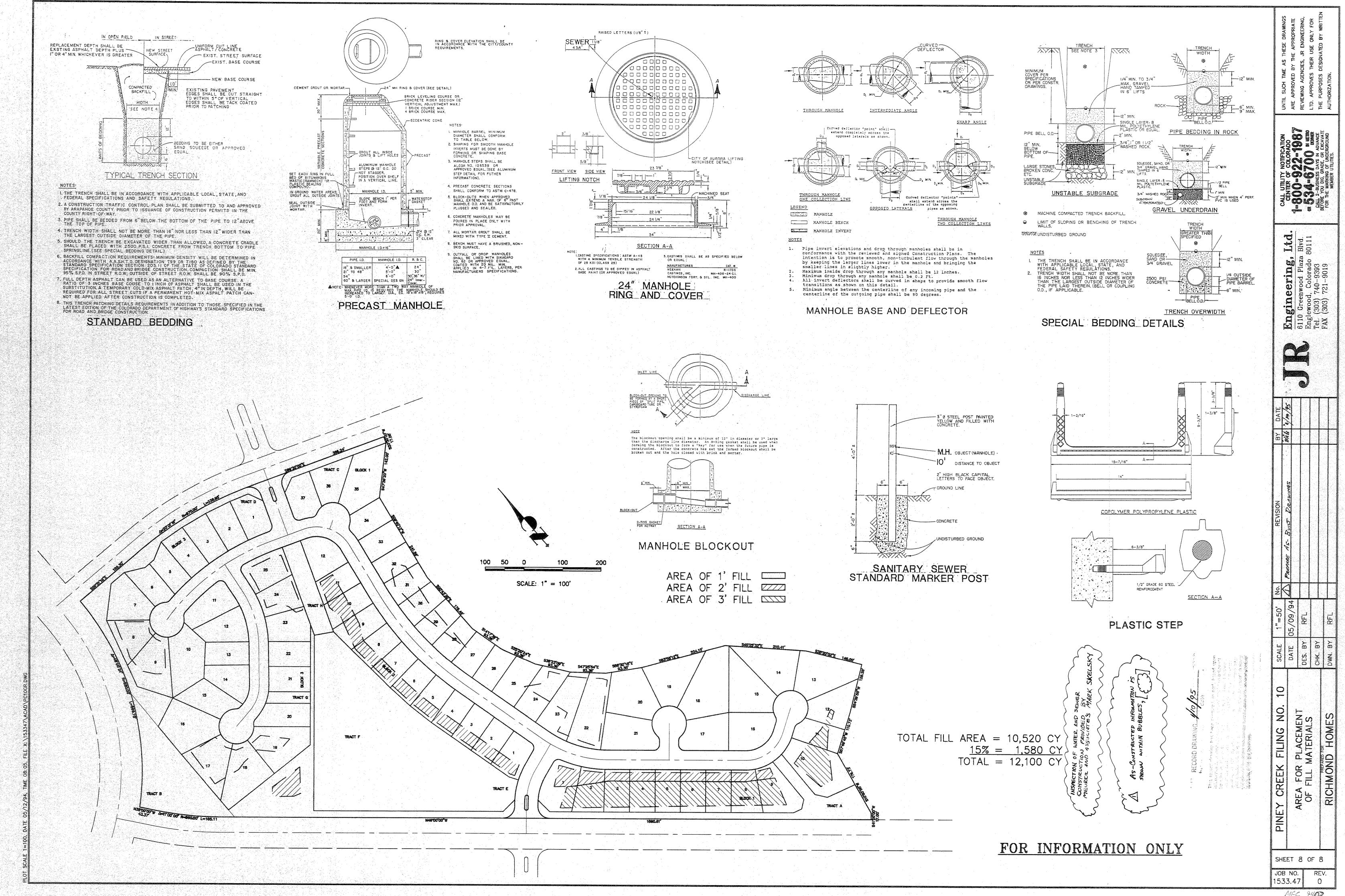
SPECIAL CONNECTION DETAIL NO SCALE

cawing or for any errors or amissions which may have been corporated into it as a result. Those retyring on this record drawing

DATE	l av	јснка.	DESCRIPTION	
11/61/29	تعا	MSD	ADDED ARAPAHOE COUNTY AND	
			UDFCD REVIEW COMMENTS	
110/95	BAB		PREPARE AS-BUILT DEAWINGS	
-7	PAD			
	Since Co.			
		20,000		
6 Sh G303		All Carlos		
	10.00	Marin Son		
A ALIGN EN				
Se Challengeri				
Constant Person				A
III F	? FN	CINE	ERING COMPANY, INC.	∉AST.
				i sacarren

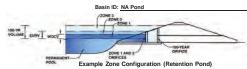

REVISIONS


BASIN RB 1 POND 4 DRAINAGE IMPROVEMENTS CONSTRUCTION DRAWINGS


POND 4 **OUTLET BOX DETAILS**

CHERRY CREEK VALLEY CONSULTING ENGINEERS WATER AND SANITATION DISTRICT
4343 S. BUCKLEY ROAD SUITE 300 AURORA, COLORADO 80015 (303) 693-3800

" APRIL.1994 MSD SCALE AS SHOWN SHEET 5 OF 8


MEC 9403

NORTH ARAPAHOE REGIONAL DETENTION BASIN INFORMATION

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Cherry Creek Minor Tributaries in Arapahoe County MDP

quired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	127.80	acres
Watershed Length =	4,335	ft
Watershed Slope =	0.017	ft/ft
Watershed Imperviousness =	46.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	in .
Water Quality Capture Volume (WQCV) =	2.097	acre-feet
Excess Urban Runoff Volume (EURV) =	6.316	acre-feet
2-yr Runoff Volume (P1 = 0.87 in.) =	3.688	acre-feet

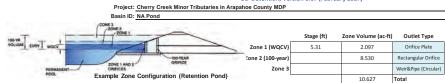
ater Quality Capture Volume (WQCV) =	2.097	acre-feet	Optional User	Ove
Excess Urban Runoff Volume (EURV) =	6.316	acre-feet	1-hr Precipitation	
2-yr Runoff Volume (P1 = 0.87 in.) =	3.688	acre-feet	0.87	inch
5-yr Runoff Volume (P1 = 1.13 in.) =	5.233	acre-feet	1.13	inch
10-yr Runoff Volume (P1 = 1.37 in.) =	7.470	acre-feet	1.37	inch
25-yr Runoff Volume (P1 = 1.73 in.) =	11.783	acre-feet	1.73	inch
50-vr Runoff Volume (P1 = 2.03 in) =	14 816	acre-feet	2.03	inch

2.36 inches 3.21 inches

10-yr Runoff Volume (P1 = 1.37 in.) =	7.470	acre-feet
25-yr Runoff Volume (P1 = 1.73 in.) =	11.783	acre-feet
50-yr Runoff Volume (P1 = 2.03 in.) =	14.816	acre-feet
100-yr Runoff Volume (P1 = 2.36 in.) =	18.817	acre-feet
500-yr Runoff Volume (P1 = 3.21 in.) =	28.199	acre-feet
Approximate 2-yr Detention Volume =	3.450	acre-feet
Approximate 5-yr Detention Volume =	4.914	acre-feet
Approximate 10-yr Detention Volume =	6.844	acre-feet
Approximate 25-yr Detention Volume =	8.329	acre-feet
Approximate 50-yr Detention Volume =	9.093	acre-feet
Approximate 100-yr Detention Volume =	10.627	acre-feet

Stage-Storage Calculation

		stage eterage ealealation
acre-feet	2.097	Zone 1 Volume (WQCV) =
acre-feet	8.530	Zone 2 Volume (100-year - Zone 1) =
acre-feet		Select Zone 3 Storage Volume (Optional) =
acre-feet	10.627	Total Detention Basin Volume =
ft^3	user	Initial Surcharge Volume (ISV) =
ft	user	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	user	Depth of Trickle Channel (H _{TC}) =
ft/ft	user	Slope of Trickle Channel (S _{TC}) =
H:V	user	Slopes of Main Basin Sides (S _{main}) =
	user	Basin Length-to-Width Ratio (R _{L/W}) =


user	ft^2
user	ft
user	ft^2
user	ft^3
user	ft
user	ft
user	ft
user	ft^2
user	ft^3
user	acre-fee
	user user user user user user user user

Depth Increment =	1	ft							
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft'2)	Optional Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool		0.00				2,015	0.046	()	(4.5.17)
		0.40				4,029	0.092	1,169	0.027
		1.40				7,745	0.178	7,018	0.161
		2.40	-			13,713	0.315	17,824	0.409
		3.40				19,405	0.445	34,383	0.789
		4.40				28,097	0.645	58,135	1.335
		5.40				47,234	1.084	95,800	2.199
		6.40			-	60,011	1.378	149,423	3.430
		7.40				65,787	1.510	212,322	4.874
	-	8.40	-			65,787	1.510	278,109	6.385
		9.40				65,787	1.510	343,896	7.895
	-		-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
			-						
	-		-						
	-		-						-
	-		-						-
			-						
	-		-						
			-						

2/15/2019, 8:30 AM NA Pond_UD-Detention_v3.07_AMB.xlsm, Basin

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Oser input. Office at Officeraram Outlet (typically o	Calculate	u raiailleteis ioi oi	iuciuiaiii		
Underdrain Orifice Invert Depth =	N/A	ft (distance below the filtration media surface)	Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Diameter =	N/A	inches	Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Pla									
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	N/A	ft ²				
Depth at top of Zone using Orifice Plate =	3.56	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet				
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet				
Orifice Plate: Orifice Area per Row =	N/A	inches	Elliptical Slot Area =	N/A	ft ²				

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

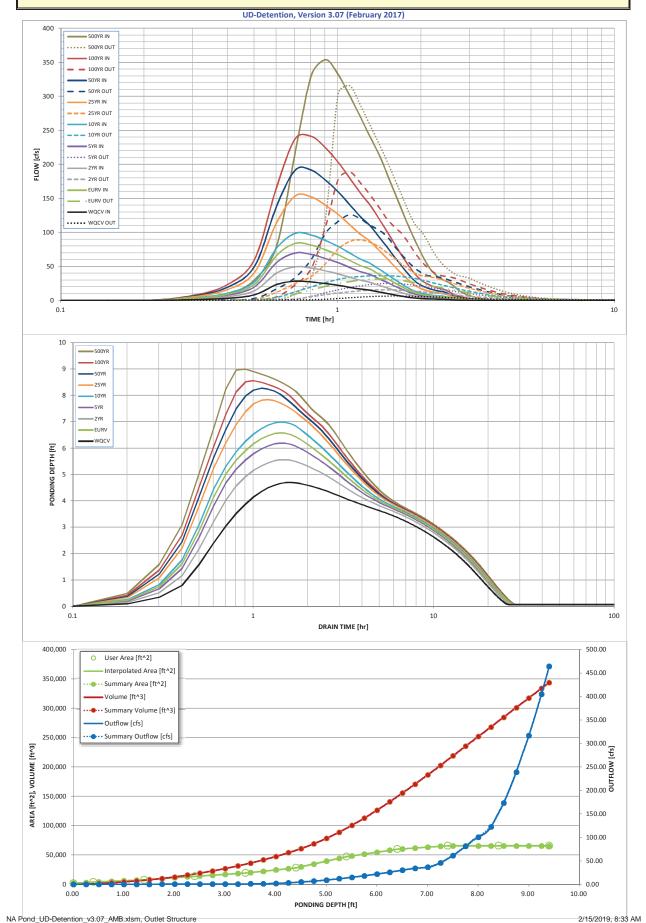
Debris Clogging % = 50%

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.06	0.40	0.73	1.06	1.40	1.73	2.06	2.40
Orifice Area (sq. inches)	7.07	1.77	1.77	1.77	1.77	1.77	1.77	1.77
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	2.73	3.06	3.40					
Orifice Area (sq. inches)	1.77	1.77	1.77					

User Input: Vertical Orifice (Circ	cular or Rectangular)		Calcula	ed Parameters for Vert	ical Orifice	
	Zone 2 Rectangular	Not Selected		Zone 2 Rectangular	Not Selected	
Invert of Vertical Orifice =	3.56	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Are	5.23	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	7.01	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroi	I = 1.55	N/A	feet
Vertical Orifice Height =	37.20	N/A	inches			-
Vertical Orifice Width =	20.25		inches			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) Calculated Parameters for Overflow Weir N/A feet
N/A H:V (enter zero for flat grate)
N/A feet Overflow Grate Open Area % =

User Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restr	ictor Plate, or Recta	ngular Orifice)	Calculated Parameters	for Outlet Pipe w/	Flow Restriction Plan	te
	Zone 3 Circular	Not Selected			Zone 3 Circular	Not Selected	
Depth to Invert of Outlet Pipe =	2.21	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	9.62	N/A	ft ²
Circular Orifice Diameter =	42.00	N/A	inches	Outlet Orifice Centroid =	1.75	N/A	feet
			Half-Central A	ngle of Restrictor Plate on Pipe =	N/A	N/A	radians
				· ·			


User Input: Emergency Spillway (Rectang	ular or Trapezoidal)		Calculat	ed Parameters for S	pillway
Spillway Invert Stage=	8.16	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	1.03	feet
Spillway Crest Length =	73.00	feet	Stage at Top of Freeboard =	11.19	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.51	acres
Freeboard above Max Water Surface =	2.00	feet			

N/A

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	0.87	1.13	1.37	1.73	2.03	2.36	3.21
Calculated Runoff Volume (acre-ft) =	2.097	6.316	3.688	5.233	7.470	11.783	14.816	18.817	28.199
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	2.096	6.311	3.687	5.230	7.459	11.774	14.812	18.807	28.191
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.01	0.12	0.46	0.66	0.94	1.52
Predevelopment Peak Q (cfs) =	0.0	0.0	0.9	1.6	15.4	58.8	85.0	119.7	194.0
Peak Inflow Q (cfs) =	28.5	84.0	49.6	69.9	98.8	153.8	191.8	241.3	353.9
Peak Outflow Q (cfs) =	6.6	31.7	15.9	25.1	36.5	89.0	126.1	188.9	315.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	15.8	2.4	1.5	1.5	1.6	1.6
Structure Controlling Flow =	Vertical Orifice 1	Overflow Grate 1	Spillway	Spillway	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	2.0	3.1	3.6	3.9
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	20	17	19	18	17	14	13	11	8
Time to Drain 99% of Inflow Volume (hours) =	23	22	23	22	21	20	19	18	16
Maximum Ponding Depth (ft) =	4.70	6.57	5.56	6.19	6.99	7.84	8.27	8.56	9.00
Area at Maximum Ponding Depth (acres) =	0.77	1.40	1.13	1.31	1.46	1.51	1.51	1.51	1.51
Maximum Volume Stored (acre-ft) =	1.540	3.666	2.377	3.134	4.266	5.539	6.188	6.626	7.276

NA Pond_UD-Detention_v3.07_AMB.xlsm, Outlet Structure 2/15/2019, 8:31 AM

Detention Basin Outlet Structure Design

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Part	Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow	
0.25 3.223 0.074 629 0.014 0.10 stages of all grade slope 0.054 0.055 5.292 0.121 2.793 0.064 0.24 0.061 0.075 5.292 0.121 2.793 0.064 0.24 0.061 0.061 0.061 0.0621 0.143 4.232 0.097 0.35 0.064 0.24 0.061 0.061 0.0621 0.143 4.232 0.097 0.35 0.064 0.24 0.061 0.061 0.061 0.0621 0.144 0.097 0.35 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.36 0.38 0.38 0.36 0.38 0.36 0.38 0.36 0.38 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.38 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.38 0.36	Description	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
0.50		0.00	2,015	0.046	0	0.000	0.00	For best results, include the
0.50		0.25	3,223	0.074	629	0.014	0.10	
1.00		0.50	4,363	0.100	1,586	0.036	0.17	, , ,
1.00 6,221 0.143 4,232 0.097 0.30 1.25 7,150 0.164 5,904 0.136 0.38 Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable). 1.75 9,774 0.224 10,074 0.231 0.52 overflow grate, and spillway, where applicable). 2.00 11,266 0.259 12,703 0.292 0.60 2.25 12,818 0.294 15,834 0.364 0.69 2.50 14,282 0.328 19,224 0.441 0.78 2.75 15,705 0.361 22,972 0.527 0.86 3.00 17,128 0.393 27,077 0.622 0.95 3.25 18,551 0.426 31,537 0.724 1.04 3.50 20,275 0.465 36,367 0.835 1.14 3.75 22,448 0.515 41,708 0.957 1.43 4.00 24,621 0.565 47,591 1.093 2.22 4.25 26,794 0.615 54,018 1.240 3.44 4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 4.50 39,580 0.999 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 10,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18,44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.334 140,565 3.227 26.07 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 225,795 5.780 100.54 8.25 65,787 1.510 226,841 6.158 173.34 9.25 65,787 1.510 226,841 6.158 173.34 9.25 65,787 1.510 284,688 6.536 173.34 9.25 65,787 1.510 284,688 6.536 173.34 9.25 65,787 1.510 31,7582 7.291 317.29		0.75	5,292	0.121	2,793	0.064	0.24	
1.50 8.282 0.190 7,817 0.179 0.45 outlets (e.g. vertical orifice, poerflow grate, and spillway, where applicable). 1.175 9,774 0.224 10,074 0.231 0.52 overflow grate, and spillway, where applicable). 2.00 11,266 0.259 12,703 0.292 0.60 overflow grate, and spillway, where applicable). 2.25 12,818 0.294 15,834 0.364 0.69 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.8		1.00	6,221	0.143	4,232	0.097	0.30	Sheet basin.
1.75 9,774 0.224 10,074 0.231 0.52 whereapplicable). 2.00 11,266 0.259 12,703 0.292 0.60 where applicable). 2.25 12,818 0.294 15,834 0.364 0.69 0.69 12,50 14,282 0.328 19,224 0.441 0.78 1.04 1.078 1.078 1.079		1.25	7,150	0.164	5,904	0.136	0.38	Also include the inverts of all
2.00 11,266 0.259 12,703 0.252 0.60 2.25 12,818 0.294 15,834 0.364 0.69 2.50 14,282 0.328 19,224 0.441 0.78 2.50 15,705 0.361 22,972 0.527 0.86 3.00 17,128 0.393 27,077 0.622 0.95 3.25 18,551 0.426 31,537 0.724 1.04 3.350 20,275 0.465 36,367 0.835 1.14 3.375 22,448 0.515 41,708 0.957 1.43 4.00 24,621 0.565 47,591 1.093 2.22 4.25 26,794 0.615 54,018 1.240 3.44 4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,888 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18,44 6.00 54,900 1.260 1.26,411 2.903 2.21 6.625 58,095 1.334 140,555 3.227 2.607 6.650 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34,17 7.00 63,477 1.457 186,470 4.281 36,588 1.09 7.25 64,921 1.490 20,519 4.649 45,88 7.26 65,787 1.510 218,901 5.025 61,50 8.80 65,787 1.510 284,688 6.336 173,34 8.875 65,787 1.510 284,688 6.336 173,34 8.80 6.90 65,787 1.510 313,582 7.291 317,29 9.25 65,787 1.510 313,582 7.291 317,29 9.25 65,787 1.510 313,582 7.291 317,29		1.50	8,282	0.190	7,817	0.179	0.45	
2,00 11,266 0.299 12,703 0.294 0.680 2,250 14,282 0.328 19,224 0.441 0.78 2,75 15,705 0.361 22,972 0.527 0.86 3,00 17,128 0.393 27,077 0.622 0.95 3,25 18,551 0.426 31,537 0.724 1.04 3,50 20,275 0.465 36,367 0.835 1.14 4,00 24,621 0.515 41,708 0.957 1.43 4,00 24,621 0.565 47,591 1.093 2.22 4,25 26,794 0.615 5,4018 1.240 3.44 4,50 30,011 0.689 61,040 1.401 5.05 4,75 34,795 0.799 69,141 1.587 7.04 5,25 44,364 1.018 8,8331 1.201 12.07 5,78 5,706 1.187 113,115 2.597 1.844		1.75	9,774	0.224	10,074	0.231	0.52	
2.50		2.00	11,266	0.259	12,703	0.292	0.60	where applicable).
2.75 15,705 0.361 22,972 0.527 0.86 3.00 17,128 0.393 27,077 0.622 0.95 3.25 18,551 0.426 31,537 0.724 1.04 3.50 20,275 0.465 36,367 0.835 1.14 4.00 24,621 0.565 47,591 1.093 2.22 4.25 26,794 0.615 54,018 1.240 3.44 4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.775 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 <		2.25	12,818	0.294	15,834	0.364	0.69	
3.00		2.50	14,282	0.328	19,224	0.441	0.78	
3.25		2.75	15,705	0.361	22,972	0.527	0.86	
3.50 20,275 0.465 36,367 0.835 1.14 3.75 22,448 0.515 41,708 0.957 1.43 4.00 24,621 0.565 47,591 1.093 2.22 4.25 26,794 0.615 54,018 1.240 3.44 4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 8.20 65,787 1.510 228,901 5.780 10.54 12.40 8.25 65,787 1.510 235,348 5.403 81.09 8.26 65,787 1.510 235,348 6.536 173.34 9.00 65,787 1.510 235,348 6.536 173.34 9.00 65,787 1.510 236,241 6.158 122.40 8.25 65,787 1.510 284,688 6.536 173.34 9.00 65,787 1.510 301,135 6.913 239.31		3.00	17,128	0.393	27,077	0.622	0.95	
3.75 22,448 0.515 41,708 0.957 1.43 4,00 24,621 0.565 47,591 1.093 2.22 4.25 26,794 0.615 54,018 1.240 3.44 4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58		3.25	18,551	0.426	31,537	0.724	1.04	
4,00 24,621 0.565 47,591 1.093 2.22 4,25 26,794 0.615 54,018 1.240 3.44 4,50 30,011 0.689 61,040 1.401 5.05 4,75 34,795 0.799 69,141 1.587 7.04 5,00 39,580 0.909 78,438 1.801 9.38 5,50 44,364 1.018 88,931 2.042 12.07 5,50 48,512 1.14 100,588 2.309 15.09 5,75 51,706 1.187 113,115 2.597 18.44 6,00 54,900 1.260 126,441 2.903 22.10 6,25 58,095 1.334 140,565 3.227 26.07 6,50 60,589 1.391 155,453 3.569 30.35 6,75 62,033 1.424 170,781 3.921 34.17 7,00 63,477 1.457 186,470 4.281 36.58 7,25 64,921 1.490 20,2519 4.649 45.88 <th></th> <td>3.50</td> <td>20,275</td> <td>0.465</td> <td>36,367</td> <td>0.835</td> <td>1.14</td> <td></td>		3.50	20,275	0.465	36,367	0.835	1.14	
4.25 26,794 0.615 54,018 1.240 3.44 4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 235,348 5.403 81.09<		3.75	22,448	0.515	41,708	0.957	1.43	
4.50 30,011 0.689 61,040 1.401 5.05 4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 251,795 5.780 100.		4.00	24,621	0.565	47,591	1.093	2.22	
4.75 34,795 0.799 69,141 1.587 7.04 5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.25 65,787 1.510 284,688 6.536 173.34 8.50 65,787 1.510 301,135 6.913 2		4.25	26,794	0.615	54,018	1.240	3.44	
5.00 39,580 0.909 78,438 1.801 9.38 5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 268,241 6.158 1		4.50	30,011	0.689	61,040	1.401	5.05	
5.25 44,364 1.018 88,931 2.042 12.07 5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 8.00 65,787 1.510 235,348 5.403 81.09 8.25 65,787 1.510 268,241 6.158 122.40 8.25 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 317,582 7.291		4.75	34,795	0.799	69,141	1.587	7.04	
5.50 48,512 1.114 100,588 2.309 15.09 5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.25 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 317,582 7.291 317.29 9,25 65,787 1.510 334,028 7.668		5.00	39,580	0.909	78,438	1.801	9.38	
5.75 51,706 1.187 113,115 2.597 18.44 6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668		5.25	44,364	1.018	88,931	2.042	12.07	
6.00 54,900 1.260 126,441 2.903 22.10 6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		5.50	48,512	1.114	100,588	2.309	15.09	
6.25 58,095 1.334 140,565 3.227 26.07 6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		5.75	51,706	1.187	113,115	2.597	18.44	
6.50 60,589 1.391 155,453 3.569 30.35 6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		6.00	54,900	1.260	126,441	2.903	22.10	
6.75 62,033 1.424 170,781 3.921 34.17 7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		6.25	58,095	1.334	140,565	3.227	26.07	
7.00 63,477 1.457 186,470 4.281 36.58 7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		6.50	60,589	1.391	155,453	3.569	30.35	
7.25 64,921 1.490 202,519 4.649 45.88 7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		6.75	62,033	1.424	170,781	3.921	34.17	
7.50 65,787 1.510 218,901 5.025 61.50 7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		7.00	63,477	1.457	186,470	4.281	36.58	
7.75 65,787 1.510 235,348 5.403 81.09 8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		7.25	64,921	1.490	202,519	4.649	45.88	
8.00 65,787 1.510 251,795 5.780 100.54 8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		7.50	65,787	1.510	218,901	5.025	61.50	
8.25 65,787 1.510 268,241 6.158 122.40 8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		7.75	65,787	1.510	235,348	5.403	81.09	
8.50 65,787 1.510 284,688 6.536 173.34 8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		8.00	65,787	1.510	251,795	5.780	100.54	
8.75 65,787 1.510 301,135 6.913 239.31 9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		8.25	65,787	1.510	268,241	6.158	122.40	
9.00 65,787 1.510 317,582 7.291 317.29 9.25 65,787 1.510 334,028 7.668 405.48		8.50	65,787	1.510	284,688	6.536	173.34	
9.25 65,787 1.510 334,028 7.668 405.48		8.75	65,787	1.510	301,135	6.913	239.31	
		9.00	65,787	1.510	317,582	7.291	317.29	
9.40 65,787 1.510 343,896 7.895 464.30		9.25	65,787	1.510	334,028	7.668	405.48	
		9.40	65,787	1.510	343,896	7.895	464.30	

NA Pond_UD-Detention_v3.07_AMB.xlsm, Outlet Structure 2/15/2019, 8:34 AM

BASELINE PEAK FLOWS		1																				
		Drainage	Existing Percent	Future Percent				Existing Co	nditions Pea	k Flow (cfs)		T			Г	Г	Future Cor	nditions Peal	k Flow (cfs)			
Basin	Design Point	Area (acres)	Imperviousness	Imperviousness	Q_{WQ}	Q ₁	Q_2	Q_5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₅₀₀	Q_{WQ}	Q ₁	Q_2	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₅₀₀
Little Raven Creek Little Raven Creek	LR_outfall Belleview LR	349 225	-	25 37	-	-	-	-	-	-	-	-	-	23 28	32 40	45 55	72 86	120 132	253 242	338	454 404	708
Little Raven Creek	Havana LR	140	-	42	-	-	-	-	-	-	-	-	-	27	37	50	74	108	185	312 236	298	609 442
Little Raven Creek	LR1	124	-	2	-	-	-	-	-	-	-	-	-	0.1	0.4	1	2	15	50	72	102	166
Little Raven Creek	LR2	85	-	28	=	-	-	-	-	-	=	-	-	7	10	14	23	39	75	98	129	196
Little Raven Creek Suhaka Creek	LR3 S outfall	140 360	-	42 25	-	-	-	-	-	-	-	-	-	27 21	37 29	50 40	74 65	108 111	185 238	236 316	298 423	442 657
Suhaka Creek	Peoria S	109	-	27	-	-	-	-	-	-	-	-	-	5	7	10	17	28	58	77	102	157
Suhaka Creek	Stock_Pond_S	131	-	43	-	-	-	-	-	-	-	-	-	19	26	35	50	74	129	165	210	313
Suhaka Creek	S1	121	-	4	-	-	-	-	-	-	-	-	-	0.5	1	2	7	27	74	103	142	226
Suhaka Creek Suhaka Creek	S2 S3	109 131	-	27 43	-	-	-	-	-	-	-	-	-	5 19	7 26	10 35	17 50	28 74	58 129	77 165	102 210	157 313
Joplin Tributary	J_outfall	774	-	39	-	-	-	-	-	-	-	-	-	84	104	130	173	217	348	446	613	985
Joplin Tributary	Parker_J	603	-	47	-	-	-	-	-	-	-	-	-	96	116	141	182	221	331	411	535	859
Joplin Tributary	Junction_J3	352	-	47	-	-	-	-	-	-	-	-	-	59	70	86	110	135	205	247	352	410
Joplin Tributary Joplin Tributary	out_RB1-4_pond RB1-4_pond	352 352	-	47 47	-	-	-	-	-	-	-	-	-	59 63	70 79	86 104	110 146	135 195	205 345	247 443	353 570	410 855
Joplin Tributary	Laredo_J	234	-	50	-	-	-	-	-	-	-	-	-	48	60	81	113	153	263	333	424	626
Joplin Tributary	Lewiston_J	126	-	52	-	-	-	-	-	-	-	-	-	27	34	46	64	86	145	184	233	342
Joplin Tributary Joplin Tributary	Junction_J4 Shalom J	101 101	-	41 41	-	-	-	-	-	-	-	-	-	16 16	20	24 25	32 32	40	63 63	87 87	122 123	208 208
Joplin Tributary		120	-	3	-	-	<u> </u>	-	-	-	-	-	-	0.0	0.2	1	1	3	29	46	70	120
Joplin Tributary	J2	51	-	28	-	-	-	-	-	-	-	-	-	2	3	4	6	8	17	26	37	65
Joplin Tributary	J3	106	-	55	-	-	-	-	-	-	-	-	-	30	37	46	62	78	127	164	210	319
Joplin Tributary Joplin Tributary	J4 	45 101	-	43 41	-	-	-	-	-	-	-	-	-	9 16	11 20	14 25	18 32	23 41	35 63	47 87	66 123	111 208
Joplin Tributary	J6	117	-	42	-	-	-	-	-	-	-	-	-	15	19	24	34	44	82	110	146	229
Joplin Tributary	J7	109	-	48	-	-	-	-	-	-	-	-	-	21	26	35	49	67	118	150	191	284
Joplin Tributary	J8	126	-	52	-	-	-	-	-	-	-	-	-	27	34	46	64	86	145	184	233	342
Grove Ranch Tributary Grove Ranch Tributary	GR_outfall GR1	81 81	-	54 54	-	-	-	-	-	-	-	-	-	18 18	23	31 31	43	59 59	96 96	121 121	150 150	221 221
Valley Club Acres Tributary	VCA outfall	207	-	45	-	-	-	-	-	-	-	-	-	34	43	59	83	114	211	272	349	524
Valley Club Acres Tributary	Fair_Place_VCA	207	-	45	-	-	-	=	-	-	•	-	-	35	44	60	85	115	211	272	349	525
Valley Club Acres Tributary	Regis_Jesuit_VCA	87	-	37	-	-	-	-	-	-	-	-	-	12	15	22	32	43	87	116	151	232 297
Valley Club Acres Tributary Valley Club Acres Tributary	VCA1 VCA2	120 87	-	51 37	-	-	-	-	-	-	-	-	-	23 12	29 15	39 22	54 32	73 43	126 87	159 116	201 151	232
North Arapahoe Tributary	NA_outfall	372	-	44	-	-	-	-	-	-	-	-	-	32	42	56	82	116	229	326	476	800
North Arapahoe Tributary	Parker_NA	372	-	44	-	-	-	-	-	-	-	-	-	33	42	57	82	116	229	326	476	800
North Arapahoe Tributary North Arapahoe Tributary	Buckley_NA1 Waco NA	272 41	-	41 28	-	-	-	-	-	-	-	-	-	15 3	21	29 6	45 10	65 15	150 33	217 44	325 59	542 92
North Arapahoe Tributary	NA_pond	128	-	46	-	-	-	-	-	-	-	-	-	23	29	39	56	77	138	176	226	336
North Arapahoe Tributary	NA1	100	-	51	-	-	-	-	-	-	-	-	-	24	30	41	56	77	131	166	209	308
North Arapahoe Tributary	NA2	128	-	46	-	-	-	-	-	-	-	-	-	23	29	39	56	77	138	176	226	336
North Arapahoe Tributary North Arapahoe Tributary	NA3 NA4	103 41	-	41 28	-	-	-	-	-	-	-	-	-	9	12	16 6	23 10	30 15	60 33	79 44	103 59	158 92
South Arapahoe Tributary	SA_outfall	396	-	30	-	-	-	-	-	-	-	-	-	26	33	44	66	102	229	311	426	667
South Arapahoe Tributary	Parker_SA	326	-	21	-	-	-	-	-	-	-	-	-	8	14	22	36	62	163	228	318	507
South Arapahoe Tributary	Norfolk_SA Richfield SA	227 132	-	20	-	-	-	-	-	-	-	-	-	6	10	15	25	43	117	162	225	357
South Arapahoe Tributary South Arapahoe Tributary	SA1	70	-	20 70	-	-	-	-	-	-	-	-	-	4 26	32	10 42	15 56	25 73	67 110	93 134	127 164	200
South Arapahoe Tributary	SA2	98	-	24	-	-	-	-	-	-	-	-	-	4	7	10	15	25	58	79	105	164
South Arapahoe Tributary	SA3	95	-	20	-	-	-	-	-	-	-	-	-	3	6	9	13	24	59	80	109	170
South Arapahoe Tributary	SA4 C outfall	132 917	-	20 23	-	-	-	-	-	-	-	-	-	4 26	43	10 64	15 112	25 198	67 478	93 669	127 942	200 1,528
Chenango Tributary Chenango Tributary	C_outrail Parker C	811	-	23	-	-	-	-	-	-	-	-	-	26	34	53	96	174	478	610	942 857	1,528
Chenango Tributary	Hinsdale_C	694	-	20	-	-	-	-	-	-	-	-	-	19	32	49	87	157	388	538	748	1,192
Chenango Tributary	Richfield_C	593	-	20	-	-	-	-	-	-	-	-	-	17	29	44	79	141	345	476	658	1,046
Chenango Tributary Chenango Tributary	Telluride_C Bridle Trail C	412 321	-	20 20	-	-	-	-	-	-	-	-	-	14 13	24	36 33	64 58	117 103	275 228	375 308	508 412	800 641
Chenango Tributary Chenango Tributary	Biscay C	132	-	20	-	-	-	-	-	-	-	-	-	6	10	15	26	49	101	135	178	275
Chenango Tributary	C1	106	-	49	-	-	-	-	_	-	-	-	-	19	25	33	46	63	109	139	176	261
Chenango Tributary	C2	117	-	19	-	-	-	-	-	-	-	-	-	4	8	12	18	33	83	114	155	243
Chenango Tributary Chenango Tributary	C3 C4	102 126	-	20 20	-	-	<u>-</u>	-	-	-	-	-	-	3	5 5	8	12 12	23 17	55 52	75 74	102 105	160 170
Chenango Tributary	C5	55	-	20	-	-	-	-	-	-	-	-	-	2	3	5	9	16	34	46	61	94
S. S. Milgo Hibutary				20										_			, ,		Ų.	10	Ų,	

Appendix B. Hydrologic Analysis Sheet 1 of 4

BASELINE PEAK FLOWS																						
								Existing Co	onditions Pe	ak Flow (cfs))						Future Cor	nditions Pea	k Flow (cfs)			
Basin	Design Point	Drainage Area (acres)	Existing Percent Imperviousness	Future Percent Imperviousness	Q _{wq}	Q ₁	Q_2	Q_5	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₅₀₀	Q _{wq}	Q ₁	Q_2	Q ₅	Q ₁₀	Q ₂₅	Q ₅₀	Q ₁₀₀	Q ₅₀₀
Chenango Tributary	C6	92	-	20	-	-	-	-	-	-	-	-	-	4	7	10	15	29	68	91	122	191
Chenango Tributary	C7	72	-	20	-	-	-	-	-	-	-	-	-	2	4	6	10	14	40	57	79	128
Chenango Tributary	C8	116	-	20	-	-	-	-	-	-	-	-	-	6	9	13	23	43	90	120	158	243
Chenango Tributary	C9	132	-	20	-	-	-	-	-	-	-	-	-	6	10	15	26	49	101	135	178	275
Tagawa Tributary	T_outfall	107	-	22	-	-	-	-	-	-	-	-	-	3	5	9	14	18	52	74	105	180
Tagawa Tributary	Parker_T1	107	-	22	-	-	-	-	-	-	-	-	-	3	6	9	14	19	52	75	105	171
Tagawa Tributary	T1	107	-	22	-	-	-	-	-	-	-	-	-	3	6	9	14	19	52	75	105	171
Kragelund Tributary	K_outfall	611	14	42	9	16	25	49	113	308	438	626	1,038	50	69	96	151	238	478	635	859	1,352
Kragelund Tributary	Parker_K	577	14	40	9	16	26	50	114	307	433	615	1,009	50	69	96	149	234	472	625	839	1,309
Kragelund Tributary	Bridle_Trail_K	453	14	43	9	16	24	45	99	264	368	514	825	52	70	97	147	223	427	557	729	1,114
Kragelund Tributary	Confluence_K	257	17	49	9	15	22	36	74	181	247	334	529	47	62	84	121	175	309	396	505	759
Kragelund Tributary	Future_Road_K	108	32	60	10	16	23	34	54	108	143	185	285	42	53	68	94	124	193	242	300	437
Kragelund Tributary	K1	34	6	59	0.1	0.2	1	1	2	13	21	30	52	12	15	18	25	32	50	64	80	118
Kragelund Tributary	K2	124	16	18	4	7	11	17	38	91	123	166	260	5	9	13	20	41	95	128	171	266
Kragelund Tributary	K3	69	2	38	0.1	0.2	0.4	1	8	27	39	55	90	8	11	14.7	21	32	59	76	98	148
Kragelund Tributary	K4	126	15	23	4	7	10	21	43	95	129	172	267	8	13	18	30	53	108	143	188	288
Kragelund Tributary	K5	45	4	45	0.1	0.4	1	2	8	24	34	47	75	9	12	16	22	32	56	71	90	133
Kragelund Tributary	K6	104	7	28	1	2	4	8	24	64	89	121	193	8	12	17	27	46	91	120	157	241
Kragelund Tributary	K7	108	32	60	10	16	23	34	54	108	143	185	285	42	53	68	94	124	193	242	300	437
17 Mile Tributary	17_outfall	145	8	36	1	2	4	8	24	84	121	169	275	18	25	36	52	78	155	204	267	408
17 Mile Tributary	Parker_17	124	7	36	0.4	2	3	6	20	70	101	141	228	17	23	32	47	70	135	177	229	349
17 Mile Tributary	17A	22	14	36	1	1	2	3	7	19	26	35	55	4	5	7	11	16	30	39	51	77
17 Mile Tributary	17B	124	7	36	0.4	2	3	6	20	70	101	141	228	17	23	32	47	70	135	177	229	349

⁽⁻⁾ Existing Conditions = Future Conditions

Appendix B. Hydrologic Analysis Sheet 2 of 4

BASELINE RUNOFF VOLUM	ES								_									_				
Desir.	Decign Deint	Drainage	Existing Percent	Future Percent			Exist	ing Condition	ons Runoff V	olume (acre	-feet)					Futi	ure Condition	ns Runoff Vo	olume (acre-	feet)		
Basin	Design Point	Area (acres)	Imperviousness	Imperviousness	V_{WQ}	V ₁	V ₂	V_5	V ₁₀	V ₂₅	V ₅₀	V ₁₀₀	V ₅₀₀	V_{WQ}	V ₁	V ₂	V ₅	V ₁₀	V ₂₅	V ₅₀	V ₁₀₀	V ₅₀₀
Little Raven Creek	LR_outfall	349	-	25 37	-	-	-	-	-	-	-	-	-	3.4	4.5	5.9	8.9	14.5	26.7	35.3	47.0	72.7
Little Raven Creek Little Raven Creek	Belleview_LR Havana LR	225 140	-	42	-	-	-	-	-	-	-	-	-	3.1 2.3	4.1 2.9	5.3 3.8	8.2 5.7	12.0 8.2	19.7 12.9	25.3 16.5	32.5 20.9	49.4 31.3
Little Raven Creek	LR1	124	-	2	-	-	-	-	-	-	-	-	-	0.0	0.1	0.1	0.2	1.7	6.1	8.9	13.0	21.9
Little Raven Creek	LR2	85	-	28	-	-	-	-	-	-	-	-	-	0.7	1.0	1.4	2.3	3.7	6.6	8.7	11.4	17.7
Little Raven Creek	LR3	140	-	42	-	-	-	-	-	-	-	-	-	2.3	2.9	3.8	5.7	8.2	12.9	16.5	20.9	31.3
Suhaka Creek Suhaka Creek	S_outfall	360	-	25	-	-	-	-	-	-	-	-	-	3.2	4.3	5.7	8.8	14.4	26.9	35.6	47.6	74.0
Sunaka Creek Suhaka Creek	Peoria_S Stock Pond S	109 131	-	27 43	-	-	-	-	-	-	-	-	-	0.8 2.2	1.2 2.8	1.7 3.6	2.7 5.2	4.4 7.4	8.2 11.9	10.9 15.2	14.4 19.3	22.4 29.1
Suhaka Creek	S1	121	-	4	-	_	-	-	-	-	-	-	-	0.0	0.1	0.2	0.7	2.2	6.5	9.3	13.3	22.0
Suhaka Creek	S2	109	-	27	-	-	-	-	-	-	-	-	-	0.8	1.2	1.7	2.7	4.4	8.2	10.9	14.4	22.4
Suhaka Creek	S3	131	-	43	-	-	-	-	-	-	-	-	-	2.2	2.8	3.6	5.2	7.4	11.9	15.2	19.3	29.1
Joplin Tributary	J_outfall	774	-	39	-	-	-	-	-	-	-	-	-	12.5	15.3	19.2	26.5	34.7	55.9	72.7	96.7	141.5
Joplin Tributary Joplin Tributary	Parker_J Junction J3	603 352	-	47 47	-	-	-	-	-	-	-	-	-	11.4 6.5	14.0 8.1	17.6 10.3	24.3 14.5	31.6 19.2	47.9 30.3	61.1 38.7	78.9 49.7	112.0 65.7
Joplin Tributary	out RB1-4 pond	352	-	47	-	-	-	_	_	-	-	_	-	6.5	8.1	10.3	14.5	19.2	30.3	38.7	49.7	65.7
Joplin Tributary	RB1-4_pond	352	-	47	-	=	-	-	-	-	=	=	=	6.5	8.1	10.3	14.5	19.2	30.3	38.7	49.7	75.5
Joplin Tributary	Laredo_J	234	-	50	-	-	-	-	-	-	-	-	-	4.7	5.8	7.5	10.5	14.1	22.0	27.8	35.3	52.5
Joplin Tributary	Lewiston_J	126	-	52	-	-	-	-	-	-	-	-	-	2.6	3.3	4.2	5.9	7.8	12.1	15.2	19.2	28.5
Joplin Tributary Joplin Tributary	Junction_J4 Shalom J	101 101	-	41 41	-	-	-	-	-	-	-	-	-	1.5 1.5	1.9 1.9	2.3	3.1	4.0	5.5 5.6	7.2 7.2	9.8 9.8	16.3 16.3
Joplin Tributary		120	-	3	-	-	-	-	-	-	-		-	0.0	0.0	0.1	0.2	0.5	4.2	6.8	10.8	18.8
Joplin Tributary	J2	51	-	28	-	-	-	-	-	-	-	-	-	0.4	0.5	0.6	0.9	1.3	2.3	3.3	4.7	8.2
Joplin Tributary	J3	106	-	55	-	-	-	-	-	-	-	-	-	2.4	3.0	3.7	5.0	6.3	9.1	11.6	14.8	22.4
Joplin Tributary	J4	45	-	43	-	-	-	-	-	-	-	-	-	0.7	0.9	1.1	1.5	1.9	2.6	3.4	4.5	7.4
Joplin Tributary	J5	101	-	41	-	-	-	-	-	-	-	-	-	1.5	1.9	2.4	3.1	4.0	5.6	7.2	9.8	16.3
Joplin Tributary Joplin Tributary	J6 J7	117 109	-	42 48	-	-	-	-	-	-	-	-	-	1.9 2.1	2.3 2.6	2.8 3.3	4.0	5.2 6.3	8.4 9.9	11.0 12.6	14.6 16.1	22.9 24.1
Joplin Tributary	J8	126	-	52	-	-	-	-	-	-	-	-	-	2.6	3.3	4.2	5.9	7.8	12.1	15.2	19.2	28.5
Grove Ranch Tributary	GR outfall	81	-	54	-	-	-	-	-	-	-	-	-	1.8	2.2	2.8	4.0	5.4	8.1	10.2	12.7	18.8
Grove Ranch Tributary	GR1	81	-	54	-	-	-	-	-	-	-	-	-	1.8	2.2	2.8	4.0	5.4	8.1	10.2	12.7	18.8
Valley Club Acres Tributary	VCA_outfall	207	-	45	-	-	-	-	-	-	-	-	-	3.7	4.5	5.9	8.3	11.2	18.0	23.0	29.6	44.8
Valley Club Acres Tributary Valley Club Acres Tributary	Fair_Place_VCA Regis Jesuit VCA	207 87	-	45 37	-	-	-	-	-	-	-	-	-	3.6 1.1	4.5 1.4	5.9 1.9	8.3 2.7	3.7	18.0 6.5	23.0 8.5	29.6 11.3	44.8 17.5
Valley Club Acres Tributary Valley Club Acres Tributary	VCA1	120	-	51	-	-	-	-	_	-	-	-	-	2.5	3.1	4.0	5.6	7.5	11.5	14.5	18.3	27.3
Valley Club Acres Tributary	VCA2	87	-	37	-	-	-	-	-	-	-	-	-	1.1	1.4	1.9	2.7	3.7	6.5	8.5	11.3	17.5
North Arapahoe Tributary	NA_outfall	372	-	44	-	-	-	-	-	-	-	-	-	6.2	7.7	10.0	14.2	19.3	31.6	40.8	52.5	79.5
North Arapahoe Tributary	Parker_NA	372	-	44	-	-	-	-	-	-	-	-	-	6.2	7.7	10.0	14.2	19.3	31.6	40.8	52.5	79.5
North Arapahoe Tributary	Buckley_NA1 Waco NA	272 41	-	41 28	-	-	-	-	-	-	-	-	-	4.1 0.3	5.2 0.4	6.8 0.6	9.7 0.9	13.2 1.4	22.2 2.7	28.8 3.7	37.4 5.0	57.1 7.9
North Arapahoe Tributary North Arapahoe Tributary	NA pond	128	-	46	-	-	-	-	-	-	-	-	-	2.3	2.8	3.7	5.2	7.1	11.4	14.5	18.6	28.0
North Arapahoe Tributary	NA1	100	-	51	-	-	-	-	-	-	-	-	-	2.0	2.5	3.3	4.5	6.1	9.5	12.0	15.1	22.5
North Arapahoe Tributary	NA2	128	-	46	-	-	-	-	-	-	-	-	-	2.3	2.8	3.7	5.2	7.1	11.4	14.5	18.6	28.0
North Arapahoe Tributary	NA3	103	-	41	-	-	-	-	-	-	-	-	-	1.6	2.0	2.5	3.6	4.8	8.1	10.6	13.9	21.3
North Arapahoe Tributary	NA4	41 396	-	28	-	-	-	-	-	-	-	-	-	0.3	0.4	0.6	0.9	1.4	2.7	3.7	5.0	7.9
South Arapahoe Tributary South Arapahoe Tributary	SA_outfall Parker SA	396	-	30 21	-	-	-	-	-	-	-	-	-	3.7 1.6	5.1 2.5	6.8 3.5	10.2 5.6	15.1 9.1	28.4	38.1 27.8	50.6 38.4	79.2 61.7
South Arapahoe Tributary	Norfolk_SA	227	-	20	-	-	-	-	-	-	-	-	-	1.0	1.5	2.2	3.6	5.9	13.5	18.9	26.3	42.4
South Arapahoe Tributary	Richfield_SA	132	-	20	-	-	-	-	-	-	-	-	-	0.5	0.9	1.2	2.0	3.3	7.7	10.8	15.1	24.4
South Arapahoe Tributary	SA1	70	-	70	-	-	-	-	-	-	-	-	-	2.1	2.6	3.3	4.6	6.0	8.3	10.1	12.3	17.6
South Arapahoe Tributary	SA2	98	-	24	-	-	-	-	-	-	-	-	-	0.6	0.9	1.2	1.9	3.1	6.4	8.8	11.9	19.0
South Arapahoe Tributary South Arapahoe Tributary	SA3 SA4	95 132	-	20 20	-	-	-	-	-	-	-	-	-	0.4 0.5	0.6 0.9	0.9 1.2	1.5 2.0	2.5 3.3	5.7 7.7	8.0 10.8	11.0 15.1	17.8 24.4
Chenango Tributary	C outfall	917	-	23	-	-	-	-	-	-	-	-	-	5.8	8.4	11.7	18.8	30.3	61.4	83.5	113.2	179.5
Chenango Tributary	Parker_C	811	-	20	=	=	=	-	-	-	-	-	-	3.7	5.7	8.2	13.9	23.7	51.3	70.3	97.0	155.3
Chenango Tributary	Hinsdale_C	694	-	20	-	-	-	-	-	-	-	-	-	3.2	5.0	7.2	12.2	20.7	44.2	60.8	83.5	133.2
Chenango Tributary	Richfield_C	593	-	20	-	-	-	-	-	-	-	-	-	2.8	4.2	6.1	10.5	17.8	37.7	51.9	71.2	113.9
Chenango Tributary Chenango Tributary	Telluride_C Bridle Trail C	412 321	-	20 20	-	-	-	<u>-</u>	-	<u>-</u>	-	-	-	2.0 1.5	3.1 2.3	4.4 3.3	7.6 6.0	13.3 10.3	27.4 21.1	37.4 28.9	50.9 39.3	80.7 62.6
Chenango Tributary Chenango Tributary	Biscay C	132	-	20	-	-	-	-	-	-	-	-	-	0.7	1.0	1.4	2.6	4.7	9.3	12.5	16.8	26.5
Chenango Tributary	C1	106	-	49	-	-	-	-	-	-	-	-	-	2.1	2.6	3.4	4.7	6.4	10.0	12.6	16.0	23.8
Chenango Tributary	C2	117	-	19	-	-	-	-	-	-	-	-	-	0.4	0.7	1.0	1.7	3.0	6.9	9.7	13.5	21.8
Chenango Tributary	C3	102	-	20	-	-	-	-	-	-	-	-	-	0.4	0.7	1.0	1.6	2.9	6.3	8.7	12.0	19.3
Chenango Tributary	C4	126	-	20	-	-	-	-	-	-	-	-	-	0.5	0.7	1.1	1.8	2.5	6.4	9.2	13.3	22.0
Chenango Tributary	C5	55	-	20	-	-	-	-	-	-	-	-	-	0.3	0.4	0.6	1.0	1.9	3.8	5.1	6.9	10.9

Sheet 3 of 4

BASELINE RUNOFF VOLU	MES																					
		Dunimana	Eviatina Dancont	Future Percent			Exis	ting Condition	ons Runoff V	olume (acre	-feet)					Futu	ure Condition	ns Runoff Vo	olume (acre-	feet)		
Basin	Design Point	Drainage Area (acres)	Existing Percent Imperviousness	Imperviousness	V_{WQ}	V_1	V ₂	V ₅	V ₁₀	V ₂₅	V ₅₀	V ₁₀₀	V ₅₀₀	V_{WQ}	V ₁	V ₂	V ₅	V ₁₀	V ₂₅	V ₅₀	V ₁₀₀	V ₅₀₀
Chenango Tributary	C6	92	-	20	-	-	-	-	-	-	-	-	-	0.4	0.6	0.9	1.5	2.7	5.9	8.1	11.0	17.7
Chenango Tributary	C7	72	=	20	-	-	-	-	-	-	-	-	-	0.3	0.4	0.6	1.0	1.5	3.7	5.3	7.7	12.7
Chenango Tributary	C8	116	-	20	-	-	-	-	=	=	-	-	-	0.6	0.9	1.3	2.3	4.1	8.1	11.0	14.8	23.3
Chenango Tributary	C9	132	-	20	-	-	-	-	-	-	-	-	-	0.7	1.0	1.4	2.6	4.7	9.3	12.5	16.8	26.5
Tagawa Tributary	T_outfall	107	-	22	-	-	-	-	-	-	-	-	-	0.5	0.7	1.0	1.6	2.3	5.3	7.6	11.1	18.5
Tagawa Tributary	Parker_T1	107	-	22	-	-	-	-	-	-	-	-	-	0.5	0.7	1.0	1.6	2.3	5.3	7.7	11.1	18.5
Tagawa Tributary	T1	107	-	22	-	-	-	-	-	-	-	-	-	0.5	0.7	1.0	1.6	2.3	5.3	7.7	11.1	18.5
Kragelund Tributary	K_outfall	611	14	42	2.2	3.3	4.8	8.2	16.4	38.1	52.8	73.0	117.2	8.1	10.6	13.8	20.4	30.2	51.6	66.9	86.5	132.0
Kragelund Tributary	Parker_K	577	14	40	2.1	3.3	4.7	8.0	16.1	36.5	50.6	69.7	111.7	7.2	9.5	12.4	18.5	27.8	47.9	62.3	81.0	123.7
Kragelund Tributary	Bridle_Trail_K	453	14	43	1.7	2.5	3.6	6.2	12.5	28.5	39.3	54.3	87.2	6.5	8.5	11.0	16.3	23.8	39.3	50.6	65.4	98.8
Kragelund Tributary	Confluence_K	257	17	49	1.2	1.8	2.5	4.0	7.5	16.6	22.7	31.0	49.7	4.6	5.8	7.5	10.7	15.0	23.8	30.2	38.4	57.4
Kragelund Tributary	Future_Road_K	108	32	60	1.0	1.5	2.0	2.9	4.5	8.2	10.8	14.2	22.1	2.7	3.3	4.3	5.9	7.8	11.4	14.1	17.5	25.6
Kragelund Tributary	K1	34	6	59	0.0	0.0	0.1	0.1	0.2	1.2	1.9	3.0	5.2	0.8	1.0	1.3	1.8	2.2	3.3	4.1	5.2	7.6
Kragelund Tributary	K2	124	16	18	0.4	0.6	0.9	1.6	3.3	7.7	10.6	14.6	23.6	0.5	8.0	1.2	1.9	3.7	8.0	11.0	15.0	24.0
Kragelund Tributary	K3	69	2	38	0.0	0.0	0.1	0.1	0.9	3.4	4.9	7.2	12.1	1.0	1.3	1.6	2.4	3.5	5.9	7.6	9.8	14.9
Kragelund Tributary	K4	126	15	23	0.4	0.6	0.9	1.9	3.8	8.2	11.2	15.4	24.6	0.8	1.1	1.6	2.8	4.8	9.2	12.3	16.4	25.7
Kragelund Tributary	K5	45	4	45	0.0	0.0	0.1	0.2	0.7	2.3	3.4	4.8	8.1	0.8	1.0	1.3	1.9	2.6	4.2	5.3	6.7	10.1
Kragelund Tributary	K6	104	7	28	0.1	0.2	0.3	0.8	2.1	5.8	8.3	11.7	19.2	0.9	1.2	1.7	2.7	4.3	7.9	10.5	13.9	21.5
Kragelund Tributary	K7	108	32	60	1.0	1.5	2.0	2.9	4.5	8.2	10.8	14.2	22.1	2.7	3.3	4.3	5.9	7.8	11.4	14.1	17.5	25.6
17 Mile Tributary	17_outfall	145	8	36	0.1	0.2	0.4	0.8	2.1	7.2	10.4	15.2	25.4	1.8	2.4	3.1	4.6	6.5	11.4	14.9	19.5	30.1
17 Mile Tributary	Parker_17	124	7	36	0.1	0.2	0.3	0.6	1.6	5.8	8.6	12.7	21.3	1.5	2.0	2.6	3.8	5.5	9.7	12.6	16.6	25.6
17 Mile Tributary	17A	22	14	36	0.0	0.1	0.1	0.2	0.5	1.2	1.7	2.4	4.0	0.3	0.3	0.5	0.7	1.0	1.7	2.2	2.9	4.5
17 Mile Tributary	17B	124	7	36	0.1	0.2	0.3	0.6	1.6	5.8	8.6	12.7	21.3	1.5	2.0	2.6	3.8	5.5	9.7	12.6	16.6	25.6

⁽⁻⁾ Existing Conditions = Future Conditions

Appendix B. Hydrologic Analysis Sheet 4 of 4

[Baseline Hydrology	SWMM Input]	;;					
;;Cherry Creek Tribs	U/S of Cherry Creek Reservoir	_					
		Belleview_LR	5609	0	0	0	0
[OPTIONS]		Havana_LR	5645	0	0	0	0
;;Option	Value	Peoria_S	5580	0	0	0	0
FLOW_UNITS	CFS	Stock_Pond_S	5621	0	0	0	0
INFILTRATION	HORTON	Parker_J	5619	0	0	0	0
FLOW_ROUTING	KINWAVE	Junction_J3	5663	0	0	0	0
LINK_OFFSETS	DEPTH	Junction_J4	5629.87	1.13	0	0	0
MIN_SLOPE	0	Regis_Jesuit_VCA	5689	0	0	0	0
ALLOW_PONDING	NO	Parker_SA	5656	0	0	0	0
SKIP_STEADY_STATE	NO	Norfolk_SA	5720	0	0	0	0
		Richfield_SA	5760	0	0	0	0
START_DATE	12/01/2018	Parker_C	5698	0	0	0	0
START_TIME	00:00:00	Hinsdale_C	5718	0	0	0	0
REPORT_START_DATE	12/01/2018	Richfield_C	5745	0	0	0	0
REPORT_START_TIME	00:00:00	Telluride_C	5774	0	0	0	0
END_DATE	12/02/2018	Bridle_Trail_C	5814	0	0	0	0
END_TIME	00:00:00	Biscay_C	5828	0	0	0	0
SWEEP_START	01/01	Parker_K	5724	0	0	0	0
SWEEP_END	12/31	Bridle_Trail_K	5765	0	0	0	0
DRY_DAYS	0	Confluence_K	5831	0	0	0	0
REPORT_STEP	00:01:00	Future_Road_K	5890	0	0	0	0
WET_STEP	00:05:00	Parker_17	5729	0	0	0	0
DRY_STEP	00:05:00	LR3	5645	0	0	0	0
ROUTING_STEP	0:00:05	LR2	5609	0	0	0	0
_		LR1	5552	0	0	0	0
INERTIAL_DAMPING	PARTIAL	S3	5621	0	0	0	0
NORMAL_FLOW_LIMITED	ВОТН	S2	5580	0	0	0	0
FORCE_MAIN_EQUATION	H-W	S1	5565	0	0	0	0
VARIABLE_STEP	0.75	J8	5738	0	0	0	0
LENGTHENING_STEP	0	J7	5729	0	0	0	0
MIN_SURFAREA	12.557	J6	5688	0	0	0	0
MAX_TRIALS	8	J5	5645	0	0	0	0
HEAD_TOLERANCE	0.005	J2	5579	0	0	0	0
SYS_FLOW_TOL	5	J4	5619	0	0	0	0
LAT_FLOW_TOL	5	J3	5619	0	0	0	0
MINIMUM_STEP	0.5	J1	5579	0	0	0	0
THREADS	1	VCA1	5631	0	0	0	0
		VCA2	5689	0	0	0	0
[FILES]		NA1	5631	0	0	0	0
;;Interfacing Files		NA2	5765	0	0	0	0
	04\WR_DRN\CUHP\OUT\CC_Ex_100yr_0mi^2_BH.txt"	NA4	5833	0	0	0	0
OBE INFLOWS 0: (5000	01/WK_DKW/COM /CC_MA_100y1_OKK Z_DM.CAC	NA3	5769	0	0	0	0
[EVAPORATION]		SA4	5760	0	0	0	0
	ameters	SA3	5720	0	0	0	0
;;		SA2	5656	0	0	0	0
CONSTANT 0.0		SA1	5633	0	0	0	0
DRY_ONLY NO		C2	5698	0	0	0	0
DICI_ONLI NO		17B	5729	0	0	0	0
[JUNCTIONS]		17A	5695	0	0	0	0
	vation MaxDepth InitDepth SurDepth Aponded	K1	5690	0	0	0	0
, , rvaille Ele	vacton maxbeben intebeben burbeben Aponded	I/T	2020	U	U	U	U

C9 C8 C7 C4 C3 C6 C5	5724 5765 5765 5831 5890 5831 5828 5817 5814 5745 5718 5774 5745 5658 5710 5620			0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
;;Name	Elevation	Type	Stage	Data	Gated R	oute
То						
;;						
	5550	FREE			NO	
LR_outfall S_outfall	5552	FREE			NO	
J_outfall	5579				NO	
VCA_outfall	5622	FREE			NO	
NA_outfall	5631	FREE			NO	
SA_outfall					NO	
T_outfall					NO	
C_outfall					NO	
K_outfall					NO	
17_outfall					NO	
GR_outfall					NO	
[DIVIDERS]						
		Diverted L			Parameters	1
;;					150 5	
	5731.16	J7_SS_OVF		CUTOFF	170.5	7.7
0	0 5717.75	J6_SS_OVF		CUTOFF	347	10
0 0	0	00_55_004		CUIUFF	347	10
Shalom_J	5638.73	J4_SS_OVF		CUTOFF	122	
15.27 0	0	0		001011	122	
Fair_Place_VCA	5626.3	VCA_SS_OVF		CUTOFF	115	4.7
0 0	0	, <u>-</u>				-• /
Parker_T1	5705.6	T0_OVF		OVERFLOW	4	0
0 0		_				
Waco_NA	5825.75	NA3_OVF		CUTOFF	43.7	6.6
0 0	0					
Buckley_NA1	5756.02	NA1_OVF		CUTOFF	195.2	
16.5 0	0	0				

out_RB1-4_p 0 Parker_NA 16.5	0		0	J3_0V				roff roff	458. 97.9		13
[STORAGE] ;;Name Name/Params ;;	3		N/A	F	evap			Shape Ksat			
RB1-4_pond 4_storage NA_pond 0 0			.5 1: 0 .58 9		0	0		TABULAR TABULAR		RB1- IA_stor	age
[CONDUITS] ;;Name Roughness ;;		set	OutOf	fset	Init	Flow	Maxl		ch		
LR1_OC	0	Belle	eview_] 0	LR	 LR_ 0	outfal	.1	4430		0.07	
LR2_OC		Havar	na_LR		Bel	leview	_LR	2280		0.07	6
0	0		0		0			1020		0.06	
S_OC_A 0	0	Peori	La_S 0		S_C	utfall		1230		0.06	7
S_OC_B 0	0	Stock	r_Pond_	_S	•	utfall		3390		0.07	8
J1_OC		Parke	er_J		J_c	utfall		4100		0.06	3
0	0		0		0						
J3_OC	0	Junct	cion_J: 0	3	Par 0	ker_J		1700		0.09	7
0 J4_OC	0	Junct	o :ion_J	4	Ū	ker_J		485		0.09	
0	0		0		0	_					
J3_SS	0	out_F	RB1-4_1	pond		ction_	_J3	1378		0.01	6
0 J4_SS	0	Shalo	0 .m .T		0 .Tun	ction_	.т⊿	807		0.01	6
0 4_55	0	bilaic			0	10011_	_0 1	007		0.01	O
J6_SS		Lared			RB1	-4_pon	ıd	1870		0.01	6
0	0		0		0						_
J7_SS 0	0	Lewis	ston_J 0		Lar	edo_J		628		0.01	6
VCA SS OUT	U	Fair	U _Place_	VCA	-	_outfa	11	1801		0.01	6
0	0		0	_,	0						
VCA1_SS		Regis	_Jesu:	it_VC <i>I</i>	A Fai	r_Plac	e_VC	A 3551		0.01	6
0	0	D.,l. 1	0	1	0	.]		2014		0 01	
NA1_SS	0	Buck	Ley_NA:	L	Par 0	ker_NA	1	3014		0.01	О
NA3_SS	5	Waco_			•	kley_N	ra1	4055		0.01	6
0	0		0		0	_					
SA1_SS 0	0	Parke	er_SA 0		SA_ 0	outfal	.1	3099		0.01	6

SA2_OC		Norfolk_SA	Parker_SA	2320	0.088	J1_0F		J1	J_outfall	400	0.01
0 SA3_OC	0	0 Richfield_SA	0 Norfolk_SA	1940	0.079	0 J2_OF	0	J2	0 0 J_outfall	400	0.01
0	0	0	0	1910	0.075	0	0	0 2	0 0	100	0.01
T0_SS 0	0	Parker_T1 0	T_outfall 0	1604	0.016	VCA1_OF	0	VCA1	Fair_Place_VCA 0 0	400	0.01
0 C1_OC	U	Parker_C	C_outfall	2855	0.07	VCA2_OF	U	VCA2	Regis_Jesuit_VC	400	0.01
0	0	0	0			0	0		0 0		
C2_OC 0	0	Hinsdale_C 0	Parker_C 0	1380	0.07	NA1_OF 0	0	NA1	Parker_NA 0 0	400	0.01
C3_OC	Ü	Richfield_C	Hinsdale_C	1475	0.077	NA2_OF	O	NA2	NA_pond	400	0.01
0	0	0	0			0	0		0 0		
C4_OC 0	0	Telluride_C 0	Richfield_C 0	1850	0.074	NA4_OF 0	0	NA4	Waco_NA 0 0	400	0.01
C6_OC	O	Bridle_Trail_C	Telluride_C	2325	0.076	NA3_OF	O	NA3	Buckley_NA1	400	0.01
0	0	0	0			0	0		0 0		
C8_OC 0	0	Biscay_C 0	Bridle_Trail_C 0	760	0.077	SA4_OF 0	0	SA4	Richfield_SA 0 0	400	0.01
K1_OC	O	Parker_K	K_outfall	2110	0.077	SA3_OF	O	SA3	Norfolk_SA	400	0.01
0	0	0	0			0	0		0 0		
K2_OC 0	0	Bridle_Trail_K 0	Parker_K 0	2620	0.077	SA2_OF 0	0	SA2	Parker_SA	400	0.01
K4_OC	O	Confluence_K	Bridle_Trail_K	2860	0.088	SA1_OF	O	SA1	SA_outfall	400	0.01
0	0	0	0			0	0	_	0 0		
K5_OC 0	0	Future_Road_K 0	Confluence_K 0	2325	0.091	C2_OF 0	0	C2	Parker_C 0 0	400	0.01
17A_OC	O	Parker_17	17_outfall	1120	0.099	C3_OF	O	С3	Hinsdale_C	400	0.01
0	0	0	0			0	0		0 0		
LR3_OF 0	0	LR3 0	Havana_LR O	400	0.01	C4_OF 0	0	C4	Richfield_C 0 0	400	0.01
LR2_OF	O	LR2	Belleview_LR	400	0.01	C5_OF	O	C5	Richfield_C	400	0.01
0	0	0	0			0	0		0 0		
LR1_OF 0	0	LR1 0	LR_outfall	400	0.01	C6_OF 0	0	C6	Telluride_C 0 0	400	0.01
S3_OF	O	S3	Stock_Pond_S	400	0.01	C7_OF	O	С7	Bridle_Trail_C	400	0.01
0	0	0	0			0	0		0 0		
S2_OF 0	0	S2 0	Peoria_S 0	400	0.01	C8_OF 0	0	C8	Bridle_Trail_C 0 0	400	0.01
S_OF	O	S1	S_outfall	400	0.01	C9_OF	O	C9	Biscay_C	400	0.01
0	0	0	0			0	0		0 0		
J8_OF 0	0	0 0	Lewiston_J 0	400	0.01	C1_OF 0	0	C1	C_outfall 0 0	400	0.01
J7_OF	O	J7	Laredo_J	400	0.01	T1_OF	O	Т1	Parker_T1	400	0.01
0	0	0	0			0	0		0 0		
J6_OF 0	0	Ј6 0	RB1-4_pond 0	400	0.01	K1_OF 0	0	K1	K_outfall 0 0	400	0.01
J5_OF	O	J5	Shalom_J	400	0.01	K2_OF	O	К2	Parker_K	400	0.01
0	0	0	0			0	0		0 0		
J4_OF 0	0	J4 О	Parker_J 0	400	0.01	17B_OF 0	0	17B	Parker_17 0 0	400	0.01
0 J3_OF	U	J3	Parker_J	400	0.01	K3_OF	U	К3	Bridle_Trail_K	400	0.01
0	0	0	0			0	0		0 0		

K5_OF	K5	Confluence_K	400	0.01		S_OC_A	IRREGULAR	LR2_OC	0	0	0
0 0 K6_OF	0 K6	0 Confluence_K	400	0.01		S_OC_B	IRREGULAR	LR2_OC	0	0	0
0 0 K7_OF	0 K7	0 Future_Road_K	400	0.01		1 J1_OC	IRREGULAR	J3_OC	0	0	0
0 0 K4_OF	0 K4	0 Bridle_Trail_K	400	0.01		1 J3_OC	IRREGULAR	J3_OC	0	0	0
0 0	0	0				1					_
17A_OF 0 0	17A 0	17_outfall 0	400	0.01		J4_OC 1	IRREGULAR	J3_OC	0	0	0
J7_SS_OVF 0 0	Lewiston_J 0	Laredo_J 0	400	0.01		J3_SS 1	CIRCULAR	6	0	0	0
J6_SS_OVF	Laredo_J	RB1-4_pond	400	0.01		J4_SS	CIRCULAR	4	0	0	0
0 0 J4_SS_OVF	0 Shalom_J	0 Junction_J4	400	0.01		1 J6_SS	CIRCULAR	5.5	0	0	0
0 0 VCA_SS_OVF	0 Fair_Place_VCA	0 VCA_outfall	400	0.01		1 J7_SS	CIRCULAR	4	0	0	0
0 0	0	0				1					
T0_OVF 0 0	Parker_T1 0	T_outfall 0	400	0.01		VCA_SS_OUT 1	RECT_CLOSED	3	8	0	0
NA3_OVF 0 0	Waco_NA 0	Buckley_NA1 0	400	0.01		VCA1_SS	CIRCULAR	5.5	0	0	0
NA1_OVF	Buckley_NA1	Parker_NA	400	0.01		1 NA1_SS	CIRCULAR	4	0	0	0
0 0 J3_OVF	0 out_RB1-4_pond	0 Junction_J3	400	0.01		1 NA3_SS	CIRCULAR	2.5	0	0	0
0 0 GR1_OF	0 GR1	0 GR_outfall	400	0.01		1 SA1_SS	RECT_OPEN	6	12	0	0
0 0	0	0				1					
NAO_SS 0 0	Parker_NA 0	NA_outfall 0	2835	0.016		SA2_OC 1	IRREGULAR	SA2_OC	0	0	0
NA0_OVF	Parker_NA	NA_outfall	400	0.01		SA3_OC	IRREGULAR	SA2_OC	0	0	0
0 0	0	0				1 TO_SS	CIRCULAR	4	0	0	0
[OUTLETS] ;;Name	From Node	To Node	Offset	Туре		1 C1_OC	IRREGULAR	C4_OC	0	0	0
QTable/Qcoeff	Qexpon Gate	d				1					0
						C2_OC 1	IRREGULAR	C4_OC	0	0	0
outlet_RB1-4_pc TABULAR/DEPTH		out_RB1-4_pond NO	0			C3_OC	IRREGULAR	C4_OC	0	0	0
outlet_NA_pond	NA_pond	Buckley_NA1	0			C4_OC	IRREGULAR	C4_OC	0	0	0
TABULAR/DEPTH	NA_rating	NO				1 C6_OC	IRREGULAR	C4_OC	0	0	0
[XSECTIONS] ;;Link	Shape Ge	om1 Ge	om2 G	Geom3		1 C8_OC	IRREGULAR	C4_OC	0	0	Ο
	cels Culvert	Omi GC	Olli2 C	Jeonis		1					O
;;					-	K1_OC 1	IRREGULAR	K4_OC	0	0	0
LR1_OC	IRREGULAR LR	.2_OC 0	C)	0	K2_OC	IRREGULAR	K4_OC	0	0	0
1 LR2_OC	IRREGULAR LR	.2_OC 0	C)	0	K4_OC	IRREGULAR	K4_OC	0	0	0
1						1					

K5_OC 1	IRREGULAR	K4_OC	0	0	0	C2_OF 1	DUMMY	0	0	0	0
17A_OC 1	IRREGULAR	17A	0	0	0	C3_OF 1	DUMMY	0	0	0	0
LR3_OF	DUMMY	0	0	0	0	C4_OF	DUMMY	0	0	0	0
LR2_OF	DUMMY	0	0	0	0	1 C5_OF	DUMMY	0	0	0	0
1 LR1_OF	DUMMY	0	0	0	0	1 C6_OF	DUMMY	0	0	0	0
1 S3_OF	DUMMY	0	0	0	0	1 C7_OF	DUMMY	0	0	0	0
1 S2_OF	DUMMY	0	0	0	0	1 C8_OF	DUMMY	0	0	0	0
1 S_OF	DUMMY	0	0	0	0	1 C9_OF	DUMMY	0	0	0	0
1 J8_OF	DUMMY	0	0	0	0	1 C1_OF	DUMMY	0	0	0	0
1 J7_OF	DUMMY	0	0	0	0	1 T1_OF	DUMMY	0	0	0	0
1 J6_OF	DUMMY	0	0	0	0	1 K1_OF	DUMMY	0	0	0	0
1 J5_OF	DUMMY	0	0	0	0	1 K2_OF	DUMMY	0	0	0	0
1 J4_OF	DUMMY	0	0	0	0	1 17B_OF	DUMMY	0	0	0	0
1 J3_OF	DUMMY	0	0	0	0	1 K3_OF	DUMMY	0	0	0	0
_ 1 J1_OF	DUMMY	0	0	0	0	_ 1 K5_OF	DUMMY	0	0	0	0
1 J2_OF	DUMMY	0	0	0	0	1 K6_OF	DUMMY	0	0	0	0
1 VCA1_OF	DUMMY	0	0	0	0	1 K7_OF	DUMMY	0	0	0	0
1				0	0	1					
VCA2_OF	DUMMY	0	0			K4_OF 1	DUMMY	0	0	0	0
NA1_OF 1	DUMMY	0	0	0	0	17A_OF 1	DUMMY	0	0	0	0
NA2_OF 1	DUMMY	0	0	0	0	J7_SS_OVF 1	DUMMY	0	0	0	0
NA4_OF 1	DUMMY	0	0	0	0	J6_SS_OVF 1	DUMMY	0	0	0	0
NA3_OF 1	DUMMY	0	0	0	0	J4_SS_OVF 1	DUMMY	0	0	0	0
SA4_OF 1	DUMMY	0	0	0	0	VCA_SS_OVF 1	DUMMY	0	0	0	0
SA3_OF 1	DUMMY	0	0	0	0	T0_OVF	DUMMY	0	0	0	0
SA2_OF	DUMMY	0	0	0	0	NA3_OVF	DUMMY	0	0	0	0
SA1_OF	DUMMY	0	0	0	0	NA1_OVF	DUMMY	0	0	0	0
Τ						Τ					

J3_OVF 1	DUMMY	0		0	0	0	NA_rating NA_rating	0.5 0.75	0.172682303 0.235463946
GR1_OF	DUMMY	0		0	0	0	NA_rating	1	0.303475519
1							NA_rating	1.25	0.378053554
NA0_SS	CIRCULAR	3.5		0	0	0	NA_rating	1.5	0.452743879
1							NA_rating	1.75	0.523860156
NA0_OVF	DUMMY	0		0	0	0	NA_rating	2	0.602156867
1							NA_rating	2.25	0.690636693
							NA_rating	2.5	0.776927912
[TRANSECTS]							NA_rating	2.75	0.860797569
;;Transect Dat	a in HEC-2 f	ormat					NA_rating	3	0.947930776
;							NA_rating	3.25	1.044520098
NC 0.073 0.	0.073						NA_rating	3.5	1.141315466
X1 LR2_OC	4	20	65	0.0	0.0	0.0	NA_rating	3.75	1.427128841
0.0 0.0							NA_rating	4	2.217337784
GR 5615 0	5609	37.5	5609	47.5	5615	85	NA_rating	4.25	3.437682479
;							NA_rating	4.5	5.05247785
NC 0.083 0.	0.083						NA_rating	4.75	7.039439785
X1 J3_OC	4	20	100	0.0	0.0	0.0	NA_rating	5	9.382521139
0.0 0.0							NA_rating	5.25	12.06927874
GR 5614 0	5609	50	5609	70	5614	120	NA_rating	5.5	15.08960806
;							NA_rating	5.75	18.43503888
NC 0.084 0.	0.084						NA_rating	6	22.09830396
X1 SA2_OC	4	28	52	0.0	0.0	0.0	NA_rating	6.25	26.07305627
0.0 0.0							NA_rating	6.5	30.35367403
GR 5711 0	5705.	5 35	5705.5	45	5711	80	NA_rating	6.75	34.16548676
;							NA_rating	7	36.58187651
NC 0.074 0.	074 0.074						NA_rating	7.25	45.87887399
X1 C4_OC	4	50	90	0.0	0.0	0.0	NA_rating	7.5	61.50071109
0.0 0.0							NA_rating	7.75	81.09168456
GR 5761 0	5755.	5 65	5755.5	75	5761	140	NA_rating	8	100.5413678
;							NA_rating	8.25	122.3952724
	0.083						NA_rating	8.5	173.3363635
X1 K4_OC	4	25	101	0.0	0.0	0.0	NA_rating	8.75	239.3125024
0.0 0.0							NA_rating	9	317.2942551
GR 5780 0	5776	53	5776	73	5779	126	NA_rating	9.25	405.4828343
;							NA_rating	9.4	464.2985611
	0.099						;		
X1 17A	4	22	60	0.0	0.0	0.0	RB1-4_storage Storage	0.0	0
0.0 0.0							RB1-4_storage	0.5	328
GR 5712.5 0	5709.	5 33	5709.5	49	5712.5	82	RB1-4_storage	1.5	2222
							RB1-4_storage	2.5	22311
[CURVES]		_	_				RB1-4_storage	3.5	41170
;;Name	Type	X-Value	Y-Value				RB1-4_storage	4.5	60321
;;							RB1-4_storage	5.5	75858
RB1-4_rating	Rating	0	0				RB1-4_storage	6.5	86332
RB1-4_rating		9.4	253				RB1-4_storage	7.5	95521
RB1-4_rating		11.5	410				RB1-4_storage	8.5	104107
RB1-4_rating		11.6	800				RB1-4_storage	9.5	112990
7	B. I.	0	0				RB1-4_storage	10.5	121937
NA_rating	Rating	0	0	7010			RB1-4_storage	11.5	131448
NA_rating		0.25	0.09957	1 7 1 7			;		

NA_storage	Storage	0	2015		LR2	39.980	7737.180
NA_storage		0.4	4028.5		LR1	90.166	8615.430
NA_storage		1.4	7744.803		S3	624.102	6776.536
NA_storage		2.4	13712.894		S2	1313.661	6895.122
NA_storage		3.4	19405.348		S1	838.769	7732.998
NA_storage		4.4	28097.354		Ј8	6593.833	8275.416
NA_storage		5.4	47234.436		J7	5980.369	8205.306
NA_storage		6.4	60011.204		Ј6	5406.342	8262.270
NA_storage		7.4	65786.986		J5	4661.421	8336.762
NA_storage		8.4	65786.986		Ј2	4034.812	8319.235
NA_storage		9.4	65786.986		J4	4337.162	8060.703
_ 3					Ј3	4931.228	7223.949
[REPORT]					J1	4424.799	7188.708
;;Reporting Opti	ons				VCA1	5848.912	5554.265
INPUT NO	.0115				VCA2	6650.797	5506.064
CONTROLS NO					NA1	6855.406	5031.735
SUBCATCHMENTS AL	.т.				NA2	8013.564	5032.820
NODES ALL	111				NA4	8740.957	4603.396
LINKS ALL					NA3	8459.378	4196.992
LINKS ALL							
					SA4	8109.965	3968.022
[TAGS]					SA3	7325.608	4024.987
[147.70]					SA2	6799.782	4125.770
[MAP]	. 000 0 000	10000 000	10000 000		SA1	5752.511	4480.703
DIMENSIONS -2727	7.273 0.000	12727.273	10000.000		C2	7268.643	3573.653
Units None					17B	8233.267	1213.789
					17A	7202.397	1595.503
[COORDINATES]					K1	7022.480	1675.735
;;Node	X-Coord		Y-Coord		K2	7664.343	1794.869
;;					К3	8692.782	1437.468
Belleview_LR	-123.123		8276.677		K4	8644.156	2322.461
Havana_LR	-252.770		7640.991		K6	9283.588	2008.823
Peoria_S	1527.855		7754.128		K7	10335.963	1338.891
Stock_Pond_S	1010.237		7302.238		K5	9222.805	1247.827
Parker_J	4212.105		7615.032		C9	9796.991	2473.799
Junction_J3	4882.479		7462.368		C8	9735.645	3152.991
Junction_J4	4371.553		7768.648		C7	9152.854	3753.310
Regis_Jesuit_VCA	5966.849		5401.173		C4	8561.300	3674.436
Parker_SA	5972.160		4615.175		C3	7728.741	3547.361
Norfolk_SA	6718.568		4442.553		C6	8736.575	2627.165
Richfield_SA	7370.156		4437.690		C5	8061.765	2898.842
Parker_C	6631.041		3292.549		C1	6791.018	2885.696
Hinsdale_C	7034.637		3151.534		T1	7991.654	2578.964
Richfield C	7501.446		3029.969		GR1	5274.885	5913.579
Telluride_C	8114.133		3085.889		LR_outfall	600.387	9309.666
Bridle_Trail_C	8790.034		3090.751		S_outfall	1366.321	8133.280
Biscay_C	9016.145		2898.679		J_outfall	3129.927	7841.141
Parker_K	7199.965		1862.945		VCA_outfall	4662.222	5584.703
Bridle_Trail_K	7968.256		2028.274		NA_outfall	4920.786	4725.636
Confluence_K	8814.347		1702.480		SA_outfall	4899.957	4644.351
Future_Road_K	9385.702		1366.961		T_outfall	6384.231	2499.017
	7423.645						
Parker_17 LR3	-491.676		1459.350 7030.960		C_outfall	5685.266	3389.801
СЯЦ	~4JI.0/0		1030.300		K_outfall	6623.748	1685.461

17 outfoll	7007 051	1366.961	
17_outfall	7097.851 4636.318	5812.849	
GR_outfall Lewiston_J	6015.436	7829.562	MARNING 04: minimum alongtion door used for Conduit ID2 OF
Laredo_J	5773.126	7792.686	WARNING 04: minimum elevation drop used for Conduit LR3_OF
Shalom_J	4467.849	7866.084	WARNING 04: minimum elevation drop used for Conduit LR2_OF
			WARNING 04: minimum elevation drop used for Conduit LR1_OF
Fair_Place_VCA	5272.176	5592.329	WARNING 04: minimum elevation drop used for Conduit S3_OF
Parker_T1	6901.788	2534.646	WARNING 04: minimum elevation drop used for Conduit S2_OF
Waco_NA	8270.083	4743.724	WARNING 04: minimum elevation drop used for Conduit S_OF
Buckley_NA1	6942.831	4717.330	WARNING 04: minimum elevation drop used for Conduit J4_OF
out_RB1-4_pond	5207.572	7550.921	WARNING 04: minimum elevation drop used for Conduit J3_OF
Parker_NA	6049.035	4729.177	WARNING 04: minimum elevation drop used for Conduit J1_OF
RB1-4_pond	5244.212	7583.078	WARNING 04: minimum elevation drop used for Conduit J2_OF
NA_pond	7032.246	4835.941	WARNING 04: minimum elevation drop used for Conduit VCA2_OF
[WARNING 04: minimum elevation drop used for Conduit SA4_OF
[VERTICES]	_		WARNING 04: minimum elevation drop used for Conduit SA3_OF
;;Link	X-Coord	Y-Coord	WARNING 04: minimum elevation drop used for Conduit SA2_OF
;;			WARNING 04: minimum elevation drop used for Conduit SA1_OF
LR1_OC	-39.481	9016.916	WARNING 04: minimum elevation drop used for Conduit C2_OF
LR2_OC	-89.666	7891.920	WARNING 04: minimum elevation drop used for Conduit C3_OF
S_OC_B	1181.705	7507.163	WARNING 04: minimum elevation drop used for Conduit C4_OF
S_OC_B	1478.637	7703.723	WARNING 04: minimum elevation drop used for Conduit C5_OF
J3_SS	5076.347	7414.844	WARNING 04: minimum elevation drop used for Conduit C6_OF
J6_SS	5319.937	7778.454	WARNING 04: minimum elevation drop used for Conduit C7_OF
C1_OC	5857.889	3290.118	WARNING 04: minimum elevation drop used for Conduit C9_OF
K1_OC	6808.526	1619.816	WARNING 04: minimum elevation drop used for Conduit C1_OF
LR1_OF	198.901	9004.369	WARNING 04: minimum elevation drop used for Conduit K1_OF
J8_OF	6300.610	7900.577	WARNING 04: minimum elevation drop used for Conduit K2_OF
J2_OF	3785.394	7860.260	WARNING 04: minimum elevation drop used for Conduit 17B_OF
NA1_OF	6340.787	4761.594	WARNING 04: minimum elevation drop used for Conduit K3_OF
NA3_OF	8082.527	4313.694	WARNING 04: minimum elevation drop used for Conduit K5_OF
NA3_OF	7861.278	4717.290	WARNING 04: minimum elevation drop used for Conduit K6_OF
C3_OF	7445.526	3270.667	WARNING 04: minimum elevation drop used for Conduit K7_OF
C4_OF	7754.301	3081.026	WARNING 04: minimum elevation drop used for Conduit K4_OF
C6_OF	8345.107	3068.869	WARNING 04: minimum elevation drop used for Conduit 17A_OF
C8_OF	9042.889	3005.656	WARNING 04: minimum elevation drop used for Conduit GR1_OF
C1_OF	5957.572	3273.098	WARNING 02: maximum depth increased for Node Junction_J4
C1_OF	5809.263	3309.568	WARNING 02: maximum depth increased for Node Fair_Place_VCA
K3_OF	8118.996	1824.045	
K5_OF	8999.126	1607.659	*************
J7_SS_OVF	5902.881	7873.780	NOTE: The summary statistics displayed in this report are
J6_SS_OVF	5309.509	7786.517	based on results found at every computational time step,
J4_SS_OVF	4380.048	7844.493	not just on results from each reporting time step.
VCA_SS_OVF	5048.151	5604.438	***********
T0_OVF	6637.415	2457.233	
NA3_OVF	7598.916	4792.742	*******
NA1_OVF	6568.539	4761.101	Analysis Options
J3_OVF	5069.958	7505.387	*******
NA0_OVF	5517.588	4782.996	Flow Units CFS
			Process Models:
			Rainfall/Runoff NO
			RDII NO
EDA CHODM MARI	TO MANIACEMENTE MODEL	VERSION E 1 (Puild E 1 010)	Charmalt

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

Snowmelt NO

Antecedent Dry Days 0.0
Report Time Step 00:01:00
Routing Time Step 5.00 sec

******	Volume	Volume
Flow Routing Continuity	acre-feet	10 ^ 6 gal
* * * * * * * * * * * * * * * * * * * *		
Dry Weather Inflow	0.000	0.000
Wet Weather Inflow	0.000	0.000
Groundwater Inflow	0.000	0.000
RDII Inflow	0.000	0.000
External Inflow	541.315	176.396
External Outflow	549.077	178.925
Flooding Loss	0.000	0.000
Evaporation Loss	0.000	0.000
Exfiltration Loss	0.000	0.000
Initial Stored Volume	0.000	0.000
Final Stored Volume	0.076	0.025
Continuity Error (%)	-1.448	

Link J3_OC (5)

Link outlet_RB1-4_pond (4) Link J1_OC (3)

Minimum Time Step : 5.00 sec
Average Time Step : 5.00 sec
Maximum Time Step : 5.00 sec
Percent in Steady State : 0.00
Average Iterations per Step : 1.00
Percent Not Converging : 0.00

	_					
			Average	Maximum	Maximum	Time of
Max Repor	ted					
			Depth	Depth	HGL	
Occurrence	Max Depth		D	D	D	J
Node hr:min	Foot	Type	reet	Feet	reet	aays
111 • 111111						
	_					
Belleview_	LR	JUNCTION	0.22	3.46	5612.46	0
00:49						
Havana_LR		JUNCTION	0.16	2.89	5647.89	0
00:40	2.88					
Peoria_S		JUNCTION	0.19	1.86	5581.86	0
01:00	1.86					
Stock_Pond		JUNCTION	0.17	2.43	5623.43	0
00:45						
Parker_J		JUNCTION	0.34	3.42	5622.42	0
01:11						
Junction_J		JUNCTION	0.35	3.94	5666.94	0
01:20			0 10	2 25	5600 14	0
Junction_J		JUNCTION	0.18	3.27	5633.14	0
00:42		TINIOMTON	0 14	0.47	E C O 1 4 7	0
Regis_Jesu		JUNCTION	0.14	2.4/	5691.4/	0
00:40		TIMOTTON	0 22	2.35	E6E0 2E	0
Parker_SA 01:07		JUNCTION	0.23	2.35	3030.33	U
Norfolk_SA		JUNCTION	0.22	2.37	5722 27	0
00:58		UUNCIION	0.22	2.37	3722.37	U
Richfield_		JUNCTION	0 17	1 94	5761 94	0
00:55		0.011011	0.17	1.01	3701.71	O
Parker_C		JUNCTION	0.40	3.90	5701.90	0
01:11						
Hinsdale_C		JUNCTION	0.36	3.66	5721.66	0
01:07	3.66					
Richfield_	C	JUNCTION	0.31	3.30	5748.30	0
01:03	3.30					
Telluride_	C	JUNCTION	0.25	3.06	5777.06	0
00:57	3.06					
Bridle_Tra	il_C	JUNCTION	0.20	2.75	5816.75	0
00:48	2.75					
Biscay_C		JUNCTION	0.13	1.89	5829.89	0
00:45	1.89					
Parker_K		JUNCTION	0.28	2.91	5726.91	0
01:12	2.91			0 = 1		•
Bridle_Tra		JUNCTION	0.24	2.71	5767.71	0
01:03	2.71	TIMOTTOT	0 15	0 04	E033 04	0
Confluence		JUNCTION	0.15	2.04	5833.04	0
00:52	2.04					

Future_Roa		JUNCTION	0.09	1.52	5891.52	0
00:40	1.52		0 10	1 50	5500 50	
Parker_17	1 50	JUNCTION	0.10	1.58	5730.58	0
00:50 LR3	1.58	JUNCTION	0.00	0.00	5645.00	0
00:00	0.00	UUNCIION	0.00	0.00	3043.00	U
LR2	0.00	JUNCTION	0.00	0.00	5609.00	0
00:00	0.00	0 011011011	0.00	0.00	3003.00	Ü
LR1		JUNCTION	0.00	0.00	5552.00	0
00:00	0.00					
S3		JUNCTION	0.00	0.00	5621.00	0
00:00	0.00					
S2		JUNCTION	0.00	0.00	5580.00	0
00:00	0.00					_
S1	0 00	JUNCTION	0.00	0.00	5565.00	0
00:00	0.00	TIMOTTON	0 00	0 00	5738.00	0
Ј8 00:00	0.00	JUNCTION	0.00	0.00	5/38.00	0
J7	0.00	JUNCTION	0.00	0.00	5729.00	0
00:00	0.00	0.011011	0.00	0.00	3723.00	O
J6		JUNCTION	0.00	0.00	5688.00	0
00:00	0.00					
J5		JUNCTION	0.00	0.00	5645.00	0
00:00	0.00					
J2		JUNCTION	0.00	0.00	5579.00	0
00:00	0.00		0.00	0 00	T. C. 1. 0. 0. 0.	
J4	0 00	JUNCTION	0.00	0.00	5619.00	0
00:00 J3	0.00	TIMOTTON	0.00	0.00	5619.00	0
00:00	0.00	JUNCTION	0.00	0.00	5619.00	U
J1	0.00	JUNCTION	0.00	0.00	5579.00	0
00:00	0.00	0 011011011	0.00	0.00	3373.00	Ü
VCA1		JUNCTION	0.00	0.00	5631.00	0
00:00	0.00					
VCA2		JUNCTION	0.00	0.00	5689.00	0
00:00	0.00					
NA1		JUNCTION	0.00	0.00	5631.00	0
00:00	0.00	TINGETON	0.00	0 00	F76F 00	0
NA2 00:00	0.00	JUNCTION	0.00	0.00	5765.00	0
NA4	0.00	JUNCTION	0.00	0.00	5833.00	0
00:00	0.00	OUNCITON	0.00	0.00	3033.00	O
NA3		JUNCTION	0.00	0.00	5769.00	0
00:00	0.00					
SA4		JUNCTION	0.00	0.00	5760.00	0
00:00	0.00					
SA3		JUNCTION	0.00	0.00	5720.00	0
00:00	0.00		0.00	0 00		
SA2	0.00	JUNCTION	0.00	0.00	5656.00	0
00:00 SA1	0.00	JUNCTION	0.00	0.00	5633.00	0
00:00	0.00	OUNCITON	0.00	0.00	3033.00	U
	0.00					

C2	0.00	JUNCTION	0.00	0.00	5698.00	0
00:00 17B	0.00	JUNCTION	0.00	0.00	5729.00	0
00:00	0.00					
17A 00:00	0.00	JUNCTION	0.00	0.00	5695.00	0
K1	0.00	JUNCTION	0.00	0.00	5690.00	0
00:00	0.00	TINGETON	0.00	0 00	F704 00	^
K2 00:00	0.00	JUNCTION	0.00	0.00	5724.00	0
К3		JUNCTION	0.00	0.00	5765.00	0
00:00	0.00	TIMOTTON	0 00	0 00	E76E 00	0
K4 00:00	0.00	JUNCTION	0.00	0.00	5765.00	0
Кб		JUNCTION	0.00	0.00	5831.00	0
00:00 K7	0.00	JUNCTION	0.00	0.00	5890.00	0
00:00	0.00	UUNCIION	0.00	0.00	3890.00	U
K5		JUNCTION	0.00	0.00	5831.00	0
00:00 C9	0.00	JUNCTION	0.00	0.00	5828.00	0
00:00	0.00	0011011	0.00	0.00	3020.00	Ü
C8	0 00	JUNCTION	0.00	0.00	5817.00	0
00:00 C7	0.00	JUNCTION	0.00	0.00	5814.00	0
00:00	0.00					
C4 00:00	0.00	JUNCTION	0.00	0.00	5745.00	0
C3	0.00	JUNCTION	0.00	0.00	5718.00	0
00:00	0.00					
C6 00:00	0.00	JUNCTION	0.00	0.00	5774.00	0
C5	0.00	JUNCTION	0.00	0.00	5745.00	0
00:00	0.00		0.00	0 00	5650.00	•
C1 00:00	0.00	JUNCTION	0.00	0.00	5658.00	0
T1		JUNCTION	0.00	0.00	5710.00	0
00:00	0.00	TIMOTTON	0 00	0 00	E620 00	0
GR1 00:00	0.00	JUNCTION	0.00	0.00	5620.00	0
LR_outfall		OUTFALL	0.26	3.27	5555.27	0
01:08 S_outfall	3.27	OUTFALL	0.22	2.33	5567.33	0
01:01	2.33	OUTFALL	0.22	2.55	3307.33	U
J_outfall	2 40	OUTFALL	0.39	3.40	5582.40	0
01:27 VCA_outfall	3.40	OUTFALL	0.20	2.43	5624.43	0
01:43	2.43	001111111	0.20	2.15	3021.13	Ü
NA_outfall	2 00	OUTFALL	0.55	2.90	5633.90	0
02:20 SA_outfall	2.89	OUTFALL	0.19	2.34	5635.34	0
01:08	2.34	_				-

T_outfall 00:51 2.30	OUTFALL	0.17	2.30	5675.30	0
C_outfall	OUTFALL	0.41	3.85	5661.85	0
01:21 3.85 K_outfall	OUTFALL	0.29	2.89	5692.89	0
01:21 2.89 17_outfall	OUTFALL	0.11	1.57	5696.57	0
00:53 1.57 GR_outfall	OUTFALL	0.00	0.00	5620.00	0
00:00 0.00 Lewiston_J	DIVIDER	0.21	3.28	5734.44	0
00:33 3.28 Laredo_J	DIVIDER	0.28	4.51	5722.26	0
00:34 4.51 Shalom_J	DIVIDER	0.18	3.27	5642.00	0
00:39 3.27 Fair_Place_VCA	DIVIDER	0.20	2.45	5628.75	0
00:45 2.45 Parker_T1	DIVIDER	0.17	2.31	5707.91	0
00:50 2.31	DIVIDER	0.17	2.05	5827.80	0
Waco_NA 00:32 2.05			_,,,		-
Buckley_NA1 00:45 3.28	DIVIDER	0.47	3.28	5759.30	0
out_RB1-4_pond 01:19 3.94	DIVIDER	0.35	3.94	5691.44	0
Parker_NA 01:37 3.29	DIVIDER	0.56	3.29	5674.98	0
RB1-4_pond 01:19 10.73	STORAGE	0.88	10.73	5698.23	0
NA_pond 01:04 8.51	STORAGE	2.95	8.51	5773.09	0

			Maximum	Maximum				
Lateral	Total	Flow	Lateral	Total	Time of Max			
Inflow	Inflow	Balance	2000201	10001	110 01 1331			
			Inflow	Inflow	Occurrence			
Volume	Volume	Error						
Node		Type	CFS	CFS	days hr:min			
10 ^ 6 gal	10 ^ 6 gal	Percent						
Bellevi	ew_LR	JUNCTION	0.00	403.67	0 00:49			
0	10.6 0	.000						

•		JUNCTION	0.00	298.37	0	00:40
0	6.82 Peoria_S	0.000 JUNCTION	0.00	101.97	0	01:00
0		0.000	0.00	101.77	O	01.00
		JUNCTION	0.00	210.26	0	00:45
0	6.29	0.000	0.00	F2F 40	0	01.11
0	Parker_J 25.7	JUNCTION 0.000	0.00	535.49	0	01:11
Ü		JUNCTION	0.00	352.47	0	01:20
0	16.2	0.000				
0	Junction_J4 3.18	JUNCTION 0.000	0.00	121.87	0	00:42
U	Regis_Jesuit_VCA	JUNCTION	0.00	150.53	0	00:40
0	3.68	0.000	0.00	130.33	Ü	00 10
	Parker_SA	JUNCTION	0.00	317.99	0	01:05
0	12.5	0.000			•	
Λ	Norfolk_SA 8.56	JUNCTION 0.000	0.00	224.51	0	00:58
U	Richfield_SA	JUNCTION	0.00	126.80	0	00:55
0	4.91	0.000	0.00		· ·	
	Parker_C	JUNCTION	0.00	857.09	0	01:11
0	31.6	0.000	0.00	B 4 B B 1	0	01.00
Ω	Hinsdale_C 27.2	JUNCTION 0.000	0.00	747.71	0	01:07
U	Richfield_C	JUNCTION	0.00	657.82	0	01:03
0	23.2	0.000				
	Telluride_C	JUNCTION	0.00	507.99	0	00:57
0	16.6	0.000	0 00	111 61	0	00.40
0	Bridle_Trail_C 12.8	JUNCTION 0.000	0.00	411.64	U	00:48
O	Biscav C	JUNCTION	0.00	178.39	0	00:45
0	5.49	0.000				
•	Parker_K	JUNCTION 0.000	0.00	615.45	0	01:12
0	22.7 Bridle_Trail_K		0.00	513.51	0	01:03
0		0.000	0.00	313.31	U	01.03
	Confluence_K	JUNCTION	0.00	334.43	0	00:52
0	10.1	0.000				
0	Future_Road_K	JUNCTION	0.00	185.44	0	00:40
0	4.63 Parker 17	0.000 JUNCTION	0.00	140.87	0	00:50
0	4.13	0.000	0.00	110.07	O	00.30
	LR3	JUNCTION	298.37	298.37	0	00:40
6.	.82 6.82	0.000				
2	LR2 .73 3.73	JUNCTION	129.14	129.14	0	00:45
3.	LR1	0.000 JUNCTION	101.66	101.66	0	01:00
4	.23 4.23	0.000		101.00	· ·	01 00
	S3	JUNCTION	210.26	210.26	0	00:45
6.	.29 6.29	0.000	101 05	101 00	^	01.00
4	S2 .69 4.69	JUNCTION 0.000	101.97	101.97	0	01:00
+ .	· · · · · · · · · · · · · · · · · · ·	0.000				

S1		JUNCTION	141.81	141.81	0	00:50
4.34	4.34	0.000				
Ј8		JUNCTION	232.67	232.67	0	00:45
6.25	6.25	0.000				
J7		JUNCTION	191.47	191.47	0	00:45
5.23	5.23	0.000				
Ј6		JUNCTION	146.38	146.38	0	00:50
4.77	4.77	0.000				
J5		JUNCTION	122.80	122.80	0	00:40
3.18	3.18	0.000				
J2		JUNCTION	37.41	37.41	0	00:50
1.53	1.53	0.000			_	
J4		JUNCTION	66.39	66.39	0	00:40
1.47	1.47	0.000	000 06	000 06	0	00-40
J3	1 00	JUNCTION	209.86	209.86	0	00:40
4.82	4.82	0.000	70.04	70.04	0	01.05
J1	2 51	JUNCTION	70.04	70.04	0	01:05
3.51	3.51	0.000	201 40	001 40	0	00.45
VCA1 5.97	5.97	JUNCTION 0.000	201.48	201.48	0	00:45
VCA2	5.97	JUNCTION	150.53	150.53	0	00:40
3.68	3.68	0.000	150.55	150.55	U	00.40
NA1	3.00	JUNCTION	208.71	208.71	0	00:40
4.92	4.92	0.000	200.71	200.71	U	00.40
NA2	4.72	JUNCTION	225.69	225.69	0	00:45
6.06	6.06	0.000	223.05	223.05	O	00-15
NA4	0.00	JUNCTION	58.66	58.66	0	00:40
1.64	1.64	0.000				
NA3		JUNCTION	103.46	103.46	0	00:55
4.52	4.52	0.000				
SA4		JUNCTION	126.80	126.80	0	00:55
4.91	4.91	0.000				
SA3		JUNCTION	108.73	108.73	0	00:50
3.6	3.6	0.000				
SA2		JUNCTION	105.35	105.35	0	00:50
3.89	3.89	0.000				
SA1		JUNCTION	163.67	163.67	0	00:40
4.01	4.01	0.000				
C2		JUNCTION	154.81	154.81	0	00:45
4.39	4.39	0.000				
17B		JUNCTION	140.87	140.87	0	00:50
4.13	4.13	0.000	24 55	24 55	0	00-40
17A	0 700	JUNCTION	34.55	34.55	0	00:40
0.798	0.798	0.000	20 40	20 40	0	00.45
K1	0 073	JUNCTION	30.48	30.48	0	00:45
0.973 K2	0.973	0.000 JUNCTION	165.59	165.59	0	00:45
4.77	4.77		105.59	103.39	U	00.45
4.77 K3	T. / /	0.000 JUNCTION	55.17	55.17	0	01:00
2.35	2.35	0.000	JJ. I/	JJ.1/	U	01.00
K4	4.55	JUNCTION	172.15	172.15	0	00:45
5.01	5.01	0.000	1,2,13	1,2,13	O	30:13
	J. U.	0.000				

K6		JUNCTION	121.37	121.37	0	00:50
3.81	3.81	0.000				
K7		JUNCTION	185.44	185.44	0	00:40
4.63	4.63	0.000	16.61	16.61	0	00.50
K5 1.58	1.58	JUNCTION 0.000	46.64	46.64	0	00:50
C9	1.50	JUNCTION	178.39	178.39	0	00:45
5.49	5.49	0.000	170.35	170.32	O	00:15
C8		JUNCTION	158.13	158.13	0	00:45
4.82	4.82	0.000				
C7		JUNCTION	79.31	79.31	0	00:45
2.5	2.5	0.000				
C4		JUNCTION	104.80	104.80	0	00:55
4.33	4.33	0.000			_	
C3	2 00	JUNCTION	101.60	101.60	0	00:50
3.92	3.92	0.000	100 15	100 15	0	00.45
C6	2 6	JUNCTION	122.15	122.15	0	00:45
3.6 C5	3.6	0.000 JUNCTION	60.80	60.80	0	00:50
2.25	2.25	0.000	00.00	00.80	U	00.50
C1	2.25	JUNCTION	176.28	176.28	0	00:45
5.2	5.2	0.000	170.20	170.20	O	00.13
T1	3.2	JUNCTION	104.95	104.95	0	00:50
3.62	3.62	0.000		_01.70	Ü	
GR1		JUNCTION	150.25	150.25	0	00:40
4.14	4.14	0.000				
LR_outf	all	OUTFALL	0.00	453.53	0	01:07
0	15.3	0.000				
S_outfa		OUTFALL	0.00	422.74	0	01:00
0	15.5	0.000				
J_outfa		OUTFALL	0.00	613.26	0	01:24
0	31.5	0.000	0 00	240 10	0	00.45
VCA_out	9.65	OUTFALL 0.000	0.00	349.18	0	00:45
NA_outf		OUTFALL	0.00	476.03	0	00:59
_	17.1	0.000	0.00	170.05	O	00.35
SA_outf		OUTFALL	0.00	426.06	0	01:04
0		0.000				
T_outfa	.11	OUTFALL	0.00	104.71	0	00:51
0	3.61	0.000				
C_outfa	.11	OUTFALL	0.00	942.12	0	01:19
0	36.9	0.000				
K_outfa		OUTFALL	0.00	626.36	0	01:21
0	23.8	0.000				
17_outf		OUTFALL	0.00	169.37	0	00:52
0 CD cut f	4.96	0.000	0 00	150 25	0	00.40
GR_outf	4.14	OUTFALL 0.000	0.00	150.25	0	00:40
Lewisto		DIVIDER	0.00	232.67	0	00:45
	6.25	0.000	0.00	202.07	J	55.15
Laredo_		DIVIDER	0.00	424.14	0	00:45
	11.5	0.000				

	Shalom_J	DIVIDER	0.00	122.80	0	00:40
0	3.18	0.000				
	Fair_Place_VCA	DIVIDER	0.00	349.24	0	00:45
0	9.64	0.000				
	Parker_T1	DIVIDER	0.00	104.95	0	00:50
0	3.62	0.000				
	Waco_NA	DIVIDER	0.00	58.66	0	00:40
0	1.64	0.000				
	Buckley_NA1	DIVIDER	0.00	324.75	0	01:03
0	12.2	0.000				
	out_RB1-4_pond	DIVIDER	0.00	352.51	0	01:19
0	16.2	0.000				
	Parker_NA	DIVIDER	0.00	476.03	0	00:59
0	17.1	0.000				
	RB1-4_pond	STORAGE	0.00	569.69	0	00:45
0	16.2	0.011				
	NA_pond	STORAGE	0.00	225.69	0	00:45
0	6.06	0.028				

No nodes were flooded.

Avg Evap Exfil Maximum Average Time of Max Maximum Max Volume Pcnt Pcnt Pcnt Volume Pcnt Occurrence Outflow 1000 ft3 Full Loss Loss 1000 ft3 Storage Unit Full days hr:min CFS _____ RB1-4_pond 43.139 690.474 0 01:18 352.51 43.569 13 0 0 NA_pond 285.349 0 01:04 175.99

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CFS	CFS	10^6 gal
LR_outfall S_outfall J_outfall VCA_outfall NA_outfall SA_outfall T_outfall C_outfall K_outfall 17_outfall GR_outfall	99.13	23.83	453.53	15.265
	79.69	30.02	422.74	15.460
	99.30	49.02	613.26	31.456
	44.97	33.19	349.18	9.646
	99.08	26.74	476.03	17.120
	99.30	25.75	426.06	16.526
	22.65	24.69	104.71	3.615
	99.30	57.56	942.12	36.938
	99.28	37.07	626.36	23.785
	44.81	17.12	169.37	4.958
	14.91	43.00	150.25	4.143
System	72.95	367.98	4310.13	178.912

Max/ Max/		Maximum	Time of Max	Maximum
Max/ Max/		Flow	Occurrence	Veloc
Full Full				
Link Flow Depth	Type	CFS	days hr:min	ft/sec
	CHANNEL	355.23	0 01:08	3.92
0.24 0.54				
_	CHANNEL	278.12	0 00:50	3.75
0.17 0.46	G	101 40	0 01.05	0.55
	CHANNEL	101.42	0 01:05	2.55
0.07 0.31		101 04	0 01.01	2 E1
S_OC_B 0.12 0.39	CHANNEL	191.94	0 01:01	3.51
	CHAMMET	526 08	0 01:27	2 25
0.42 0.68	CHANNEL	320.00	0 01.27	3.33
J3 OC	CHANNEL	351.13	0 01:25	4.41
0.17 0.45				
J4_OC	CHANNEL	121.27	0 00:44	2.64
0.06 0.27				
J3_SS	CONDUIT	352.47	0 01:20	17.90
0.77 0.66				
J4_SS	CONDUIT	121.87	0 00:42	11.16
1.00 0.82				

J6_SS	CONDUIT	347.74	0 01:01	16.83	J4_OF	DUMMY	66.39	0	00:40	
1.00 0.82					J3_OF	DUMMY	209.86	0	00:40	
J7_SS	CONDUIT	170.68	0 01:08	15.55	J1_0F	DUMMY	70.04	0	01:05	
1.00 0.82					J2_OF	DUMMY	37.41	0	00:50	
VCA_SS_OUT	CONDUIT	115.86	0 01:43	6.08	VCA1_OF	DUMMY	201.48	0	00:45	
1.00 0.80					VCA2_OF	DUMMY	150.53	0	00:40	
VCA1_SS	CONDUIT	147.93	0 00:45	14.61	NA1_OF	DUMMY	208.71	0	00:40	
0.41 0.44					NA2_OF	DUMMY	225.69	0	00:45	
NA1_SS	CONDUIT	196.00	0 01:37	18.03	$\mathtt{NA4_OF}$	DUMMY	58.66	0	00:40	
1.00 0.82					NA3_OF	DUMMY	103.46	0	00:55	
NA3_SS	CONDUIT	44.22	0 01:10	10.70	SA4_OF	DUMMY	126.80	0	00:55	
1.01 0.82					SA3_OF	DUMMY	108.73	0	00:50	
SA1_SS	CONDUIT	317.45	0 01:08	11.36	SA2_OF	DUMMY	105.35	0	00:50	
0.26 0.39					SA1_OF	DUMMY	163.67	0	00:40	
SA2_OC	CHANNEL	221.56	0 01:07	3.84	C2_OF	DUMMY	154.81	0	00:45	
0.14 0.43					C3_OF	DUMMY	101.60	0	00:50	
SA3_OC	CHANNEL	123.79	0 01:02	2.96	C4_OF	DUMMY	104.80	0	00:55	
0.09 0.35					C5_OF	DUMMY	60.80	0	00:50	
T0_SS	CONDUIT	104.71	0 00:51	14.02	C6_OF	DUMMY	122.15	0	00:45	
0.63 0.58	001.2021	1017.1	0 00 01		C7_OF	DUMMY	79.31	0	00:45	
C1_OC	CHANNEL	834.46	0 01:21	4.01	C8_OF	DUMMY	158.13	0	00:45	
0.42 0.70	CIII II VII II	031.10	0 01 21	1.01	C9_OF	DUMMY	178.39	0	00:45	
C2_OC	CHANNEL	743.91	0 01:12	3.87	C1_OF	DUMMY	176.28	0	00:45	
0.36 0.66	CHANNEL	713.71	0 01.12	3.07	T1_OF	DUMMY	104.95	0	00:50	
C3_OC	CHANNEL	654.25	0 01:08	4.09	K1_OF	DUMMY	30.48	0	00:45	
0.29 0.60	CIMMANATE	031.23	0 01.00	1.05	K2_OF	DUMMY	165.59	0	00:45	
C4_OC	CHANNEL	500.33	0 01:04	3.63	17B_OF	DUMMY	140.87	0	00:50	
0.24 0.55	CHANNEL	300.33	0 01.01	3.03	K3_OF	DUMMY	55.17	0	01:00	
C6_OC	CHANNEL	397.45	0 00:58	3.56	K5_OF	DUMMY	46.64	0	00:50	
0.18 0.49	CHANNEL	337.13	0 00.30	3.30	K6_OF	DUMMY	121.37	0	00:50	
C8_OC	CHANNEL	177.03	0 00:50	2.93	KO_OF K7_OF	DUMMY	185.44	0	00:30	
0.08 0.34	CHANNEL	177.03	0 00.30	2.75	K4_OF	DUMMY	172.15	0	00:45	
K1_OC	CHANNEL	606.59	0 01:21	3.32	17A_OF	DUMMY	34.55	0	00:43	
0.45 0.72	CHANNEL	000.55	0 01.21	3.32	J7_SS_OVF	DUMMY	62.17	0	00:45	
K2_OC	CHANNEL	498.06	0 01:16	3.17	J6_SS_OVF	DUMMY	77.14	0	00:45	
0.38 0.66	CHAMMEL	190.00	0 01.10	3.17	J4_SS_OVF	DUMMY	0.80	0	00:45	
K4_OC	CHANNEL	315.77	0 01:08	3.28	VCA_SS_OVF	DUMMY	234.24	0	00:40	
0.20 0.50	CHAMMEL	313.77	0 01.00	3.20	T0_OVF		0.00	0	00:45	
K5_OC	CITANINET	170.71	0 00:55	2.87		DUMMY DUMMY	14.96	0	00:00	
0.10 0.36	CHANNEL	1/0./1	0 00.55	2.07	NA3_OVF			0	00:40	
17A_OC	CHANNEL	139.29	0 00:53	2.69	NA1_OVF	DUMMY	129.55 0.00	0	00:00	
0.25 0.52	CHANNEL	139.49	0 00.53	2.09	J3_OVF	DUMMY				
	DIIMMIS Z	200 27	0 00.40		GR1_OF	DUMMY	150.25	0	00:40	10.00
LR3_OF	DUMMY	298.37	0 00:40		NAO_SS	CONDUIT	98.74	0	02:20	12.02
LR2_OF	DUMMY	129.14	0 00:45		1.01 0.82	TOTAL AND AS A	270 12	0	00.50	
LR1_OF	DUMMY	101.66	0 01:00		NAO_OVF	DUMMY	378.13		00:59	
S3_OF	DUMMY	210.26	0 00:45		outlet_RB1-4_pond	DUMMY	352.51	0	01:19	
S2_OF	DUMMY	101.97	0 01:00		outlet_NA_pond	DUMMY	175.99	0	01:04	
S_OF	DUMMY	141.81	0 00:50							
J8_OF	DUMMY	232.67	0 00:45		*********	and the state of the state of				
J7_OF	DUMMY	191.47	0 00:45							
J6_OF	DUMMY	146.38	0 00:50		Conduit Surcharge					
J5_OF	DUMMY	122.80	0 00:40		********	*****				

				Hours
Hours				HOULD
		Hours Full		Above Full
Capacity Conduit Limited	Both Ends	Upstream	Dnstream	Normal Flow
J6_SS	0.01	0.01	0.01	0.02
0.01				
J7_SS 0.01	0.01	0.01	0.01	0.01
VCA_SS_OUT	0.01	0.01	0.01	0.03
0.01				
NA1_SS 0.01	0.01	0.01	0.01	0.03
NA3_SS	0.01	0.01	0.01	0.07
0.01				
NA0_SS 0.01	0.01	0.01	0.01	0.04
0.01				

Analysis begun on: Mon Feb 11 11:07:13 2019 Analysis ended on: Mon Feb 11 11:07:14 2019

Total elapsed time: 00:00:01

[Baseline Hydrology		;;					
;;Cherry Creek Trib	s U/S of Cherry Creek Reservoir	-					
		Belleview_LR	5609	0	0	0	0
[OPTIONS]		Havana_LR	5645	0	0	0	0
;;Option	Value	Peoria_S	5580	0	0	0	0
FLOW_UNITS	CFS	Stock_Pond_S	5621	0	0	0	0
INFILTRATION	HORTON	Parker_J	5619	0	0	0	0
FLOW_ROUTING	KINWAVE	Junction_J3	5663	0	0	0	0
LINK_OFFSETS	DEPTH	Junction_J4	5629.87	1.13	0	0	0
MIN_SLOPE	0	Regis_Jesuit_VCA	. 5689	0	0	0	0
ALLOW_PONDING	NO	Parker_SA	5656	0	0	0	0
SKIP_STEADY_STATE	NO	Norfolk_SA	5720	0	0	0	0
		Richfield_SA	5760	0	0	0	0
START_DATE	12/01/2018	Parker_C	5698	0	0	0	0
START_TIME	00:00:00	Hinsdale_C	5718	0	0	0	0
REPORT_START_DATE	12/01/2018	Richfield_C	5745	0	0	0	0
REPORT_START_TIME	00:00:00	Telluride_C	5774	0	0	0	0
END_DATE	12/02/2018	Bridle_Trail_C	5814	0	0	0	0
END_TIME	00:00:00	Biscay_C	5828	0	0	0	0
SWEEP_START	01/01	Parker_K	5724	0	0	0	0
SWEEP_END	12/31	Bridle_Trail_K	5765	0	0	0	0
DRY_DAYS	0	Confluence_K	5831	0	0	0	0
REPORT_STEP	00:01:00	Future_Road_K	5890	0	0	0	0
WET_STEP	00:05:00	Parker_17	5729	0	0	0	0
	00:05:00		5645	0	0	0	0
DRY_STEP		LR3 LR2	5609	0	0	0	0
ROUTING_STEP	0:00:05				-	•	0
THERETAL DAMPING		LR1	5552	0	0	0	· ·
INERTIAL_DAMPING	PARTIAL	S3	5621	0	0	0	0
NORMAL_FLOW_LIMITED		S2	5580	0	0	0	0
FORCE_MAIN_EQUATION		S1	5565	0	0	0	0
VARIABLE_STEP	0.75	J8 - -	5738	0	0	0	0
LENGTHENING_STEP	0	J7	5729	0	0	0	0
MIN_SURFAREA	12.557	J6	5688	0	0	0	0
MAX_TRIALS	8	J5	5645	0	0	0	0
HEAD_TOLERANCE	0.005	J2	5579	0	0	0	0
SYS_FLOW_TOL	5	J4	5619	0	0	0	0
LAT_FLOW_TOL	5	J3	5619	0	0	0	0
MINIMUM_STEP	0.5	J1	5579	0	0	0	0
THREADS	1	VCA1	5631	0	0	0	0
		VCA2	5689	0	0	0	0
[FILES]		NA1	5631	0	0	0	0
;;Interfacing Files		NA2	5765	0	0	0	0
USE INFLOWS "J:\506	004\WR_DRN\CUHP\OUT\CC_Fut_100yr_0mi^2_BH.txt"	NA4	5833	0	0	0	0
		NA3	5769	0	0	0	0
[EVAPORATION]		SA4	5760	0	0	0	0
;;Data Source Pa:	rameters	SA3	5720	0	0	0	0
;;		SA2	5656	0	0	0	0
CONSTANT 0.	0	SA1	5633	0	0	0	0
DRY_ONLY NO		C2	5698	0	0	0	0
_		17B	5729	0	0	0	0
[JUNCTIONS]		17A	5695	0	0	0	0
	evation MaxDepth InitDepth SurDepth Aponded	K1	5690	0	0	0	0
	* · · · · · · · · · · · · · · · · · · ·		-	-	-	-	-

C6 C5 C1 T1 GR1	5724 5765 5765 5831 5890 5831 5828 5817 5814 5745 5718 5774 5745 5658 5710 5620	0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	
[OUTFALLS] ;;Name To	Elevation	Туре	Stage	Data	Gated I	Route
;;						
LR_outfall S_outfall J_outfall VCA_outfall NA_outfall SA_outfall T_outfall C_outfall K_outfall 17_outfall	5579 5622 5631 5633 5673 5658 5690 5695	FREE FREE FREE FREE FREE FREE			NO	
[DIVIDERS] ;;Name ;;		Diverted L:		Type	Parameters	5
	5731.16	J7_SS_OVF		CUTOFF	170.5	7.7
Laredo_J 0 0	5717.75 0	J6_SS_OVF		CUTOFF	347	10
Shalom_J 15.27 0	5638.73	J4_SS_OVF 0		CUTOFF	122	
Fair_Place_VCA 0 0	5626.3 0	VCA_SS_OVF		CUTOFF	115	4.7
Parker_T1 0 0	5705.6	T0_OVF		OVERFLOW	4	0
Waco_NA 0 0	5825.75	NA3_OVF		CUTOFF	43.7	6.6
Buckley_NA1 16.5 0	5756.02 0	NA1_OVF 0		CUTOFF	195.2	

out_RB1-4 <u>r</u> 0	Λ		Λ				CUT	OFF	458.8	1	13
Parker_NA 16.5		5671.	69	NAO_	_OVF 0		CUT	OFF	97.9		
[STORAGE] ;;Name Name/Params ;;	3		N/A		Fevap	Ps		Shape Ksat			
RB1-4_pond 4_storage NA_pond 0 0					0	0		TABULAR			ge
[CONDUITS] ;;Name Roughness ;;	InOffs	set	OutOfi	fset	Init	Flow		Lengt low	.h		
 LR1_OC 0 LR2_OC 0			view_I 0 .a_LR		LR_ 0			4430 2280		0.07	
S_OC_A 0 S_OC_B 0	0	Peori Stock	0 :_Pond_		0	utfall utfall		1230 3390		0.067	
J1_OC 0 J3_OC	0	Parke Junct	r_J	3	J_o 0 Par	utfall ker_J		4100 1700		0.063	
0 J4_OC 0 J3_SS	0	Junct	ion_J4		0	ker_J .ction_		485 1378		0.09	
0 J4_SS 0 J6_SS	0		0		0	ction_		807 1870		0.016	
0 J7_SS 0	0	Lewis	0 ton_J 0		0 Lar 0	edo_J		628		0.016	
VCA_SS_OUT 0 VCA1_SS 0	0		Place 0 _Jesu: 0		0	_outfa		1801 3551		0.016	
NA1_SS 0 NA3_SS	0	Buckl Waco_	-	1	0 Buc	ker_NA kley_N		3014 4055		0.016	
0 SA1_SS 0	0	Parke	0 r_SA 0		0 SA_ 0	outfal	1	3099		0.016	

SA2_OC	0	Norfolk_SA	Parker_SA	2320	0.088	J1_OF	J1	J_outfall	400	0.01
0 SA3_OC	0	0 Richfield_SA	0 Norfolk_SA	1940	0.079	0 0 J2_OF	0 J2	0 J_outfall	400	0.01
0 T0_SS	0	0 Parker_T1	0 T_outfall 0	1604	0.016	0 0 VCA1_OF	0 VCA1	0 Fair_Place_VCA	400	0.01
0 C1_OC	0	0 Parker_C	C_outfall	2855	0.07	0 0 VCA2_OF	0 VCA2	Regis_Jesuit_VCA	400	0.01
0 C2_OC	0	0 Hinsdale_C	Parker_C	1380	0.07	0 0 NA1_OF	0 NA1	Parker_NA	400	0.01
0 C3_OC	0	0 Richfield_C	Hinsdale_C	1475	0.077	0 0 NA2_OF	0 NA2	NA_pond	400	0.01
0 C4_OC	0	0 Telluride_C	Richfield_C	1850	0.074	0 0 NA4_OF	0 NA4	Waco_NA	400	0.01
0 C6_OC	0	0 Bridle_Trail_C	Telluride_C	2325	0.076	0 0 NA3_OF	0 NA3	Buckley_NA1	400	0.01
0 C8_OC 0	0	0 Biscay_C	Bridle_Trail_C	760	0.077	0 0 SA4_OF	0 SA4	Richfield_SA	400	0.01
K1_OC 0	0	Parker_K	K_outfall	2110	0.077	0 0 SA3_OF	0 SA3	Norfolk_SA	400	0.01
K2_OC 0	0	Bridle_Trail_K	Parker_K	2620	0.077	0 0 SA2_OF 0 0	0 SA2	Parker_SA	400	0.01
K4_OC 0	0	Confluence_K 0	Bridle_Trail_K	2860	0.088	SA1_OF	0 SA1 0	SA_outfall	400	0.01
K5_OC 0	0	Future_Road_K 0	Confluence_K	2325	0.091	C2_OF	C2	Parker_C	400	0.01
17A_OC 0	0	Parker_17	17_outfall	1120	0.099	0 0 C3_OF 0 0	0 C3 0	Hinsdale_C	400	0.01
LR3_OF	0	LR3	Havana_LR	400	0.01	C4_OF	C4 0	Richfield_C	400	0.01
LR2_OF	0	LR2	Belleview_LR	400	0.01	C5_OF	C5 0	Richfield_C	400	0.01
LR1_OF	0	LR1	LR_outfall	400	0.01	0 0 C6_OF 0 0	C6 0	Telluride_C	400	0.01
S3_OF 0	0	S3 0	Stock_Pond_S	400	0.01	C7_OF 0 0	C7 0	Bridle_Trail_C	400	0.01
S2_OF	0	S2 0	Peoria_S	400	0.01	C8_OF 0 0	C8	Bridle_Trail_C	400	0.01
0 S_OF 0	0	S1 0	S_outfall	400	0.01	C9_OF 0 0	0 C9	Biscay_C	400	0.01
J8_OF 0	0	J8 0	Lewiston_J	400	0.01	C1_OF 0 0	0 C1 0	C_outfall	400	0.01
Ј7_ОF 0	0	J7 0	Laredo_J	400	0.01	T1_OF 0 0	T1 0	Parker_T1	400	0.01
J6_OF 0	0	Јб 0	RB1-4_pond	400	0.01	K1_OF 0 0	K1 0	K_outfall	400	0.01
J5_OF 0		J5 0	Shalom_J	400	0.01	K2_OF 0 0	K2	Parker_K	400	0.01
J4_OF 0	0	Ј4 0	Parker_J	400	0.01	17B_OF	0 17B	Parker_17	400	0.01
J3_OF 0	0	J3	Parker_J 0	400	0.01	0 0 K3_OF	0 K3	Bridle_Trail_K	400	0.01
U	0	0	U			0 0	0	0		

K5_OF	К5	Confluence_K	400	0.01		S_OC_A	IRREGULAR	LR2_OC	0	0	0
0 0 K6_OF	0 K6	O Confluence_K	400	0.01		S_OC_B	IRREGULAR	LR2_OC	0	0	0
0 0 K7_OF	0 K7	0 Future_Road_K	400	0.01		J1_OC	IRREGULAR	J3_OC	0	0	0
0 0 K4_OF	0 K4	0 Bridle_Trail_K	400	0.01		1 J3_OC	IRREGULAR	J3_OC	0	0	0
0 0 17A_OF	0 17A	0 17_outfall	400	0.01		1 J4_OC	IRREGULAR	J3_OC	0	0	0
0 0 J7_SS_OVF	0 Lewiston_J	0 Laredo_J	400	0.01		1 J3_SS	CIRCULAR	6	0	0	0
0	0 Laredo_J	0 RB1-4_pond	400	0.01		1 J4_SS	CIRCULAR	4	0	0	0
0	0 Shalom_J	0 Junction_J4	400	0.01		1 J6_SS	CIRCULAR	5.5	0	0	0
0	0 Fair_Place_VCA	0 VCA_outfall	400	0.01		1 J7_SS	CIRCULAR	4	0	0	0
0 0 T0_OVF	0 Parker_T1	0 T_outfall	400	0.01		1 VCA_SS_OUT	RECT_CLOSED	3	8	0	0
0 0 NA3_OVF	0 Waco_NA	0 Buckley_NA1	400	0.01		1 VCA1_SS	CIRCULAR	5.5	0	0	0
0 0 NA1_OVF	0 Buckley_NA1	0 Parker_NA	400	0.01		1 NA1_SS	CIRCULAR	4	0	0	0
0 0 J3_OVF	0 out_RB1-4_pond	0 Junction_J3	400	0.01		1 NA3_SS	CIRCULAR	2.5	0	0	0
0 0 GR1_OF	0 GR1	0 GR_outfall	400	0.01		1 SA1_SS	RECT_OPEN	6	12	0	0
0 0 NAO_SS	0 Parker_NA	0 NA_outfall	2835	0.016		1 SA2_OC	IRREGULAR	SA2_OC	0	0	0
0 0 NAO_OVF	0 Parker_NA	0 NA_outfall	400	0.01		1 SA3_OC	IRREGULAR	SA2_OC	0	0	0
0 0	0	0				1 T0_SS	CIRCULAR	4	0	0	0
[OUTLETS] ;;Name	From Node	To Node	Offset	Туре		1 C1_OC	IRREGULAR	C4_OC	0	0	0
QTable/Qcoeff;;	Qexpon Gate					1 C2_OC	IRREGULAR	C4_OC	0	0	0
 outlet_RB1-4_pc	 nd RB1-4_pond	 out_RB1-4_pond	0			1 C3_OC	IRREGULAR	C4_OC	0	0	0
TABULAR/DEPTH outlet_NA_pond	RB1-4_rating NA_pond	NO Buckley_NA1	0			1 C4_OC	IRREGULAR	C4_OC	0	0	0
TABULAR/DEPTH	NA_rating	NO				1 C6_OC	IRREGULAR	C4_OC	0	0	0
[XSECTIONS] ;;Link	Shape Ge	oml Geo	om2 Ge	eom3		1 C8_OC	IRREGULAR	C4_OC	0	0	0
Geom4 Barr	els Culvert				_	1 K1_OC	IRREGULAR	K4_OC	0	0	0
LR1_OC	IRREGULAR LR	2_OC 0	0		0	1 K2_OC	IRREGULAR	K4_OC	0	0	0
1 LR2_OC		2_OC 0	0		0	1 K4_OC	IRREGULAR	K4_OC	0	0	0
1	III.	2_00	0			1	TIMESOUPH	1.1_00	3		J

К5_ОС 1	IRREGULAR	K4_OC	0	0	0	C2_OF 1	DUMMY	0	0	0	0
17A_OC 1	IRREGULAR	17A	0	0	0	C3_OF 1	DUMMY	0	0	0	0
LR3_OF	DUMMY	0	0	0	0	C4_OF	DUMMY	0	0	0	0
1 LR2_OF	DUMMY	0	0	0	0	1 C5_OF	DUMMY	0	0	0	0
1 LR1_OF	DUMMY	0	0	0	0	1 C6_OF	DUMMY	0	0	0	0
1 S3_OF	DUMMY	0	0	0	0	1 C7_OF	DUMMY	0	0	0	0
1 S2_OF	DUMMY	0	0	0	0	1 C8_OF	DUMMY	0	0	0	0
1 S_OF	DUMMY	0	0	0	0	1 C9_OF	DUMMY	0	0	0	0
1 J8_OF	DUMMY	0	0	0	0	1 C1_OF	DUMMY	0	0	0	0
1 J7_OF	DUMMY	0	0	0	0	1 T1_OF	DUMMY	0	0	0	0
1 J6_OF	DUMMY	0	0	0	0	1 K1_OF	DUMMY	0	0	0	0
1 J5_OF	DUMMY	0	0	0	0	1 K2_OF	DUMMY	0	0	0	0
1 J4_OF	DUMMY	0	0	0	0	1 17B_OF	DUMMY	0	0	0	0
1 J3_OF	DUMMY	0	0	0	0	1 K3_OF	DUMMY	0	0	0	0
_ 1 J1_OF	DUMMY	0	0	0	0	1 K5_OF	DUMMY	0	0	0	0
1 J2_OF	DUMMY	0	0	0	0	1 K6_OF	DUMMY	0	0	0	0
1 VCA1_OF	DUMMY	0	0	0	0	1 K7_OF	DUMMY	0	0	0	0
1						1					
VCA2_OF	DUMMY	0	0	0	0	K4_OF 1	DUMMY	0	0	0	0
NA1_OF 1	DUMMY	0	0	0	0	17A_OF 1	DUMMY	0	0	0	0
NA2_OF 1	DUMMY	0	0	0	0	J7_SS_OVF 1	DUMMY	0	0	0	0
NA4_OF 1	DUMMY	0	0	0	0	J6_SS_OVF 1	DUMMY	0	0	0	0
NA3_OF 1	DUMMY	0	0	0	0	J4_SS_OVF 1	DUMMY	0	0	0	0
SA4_OF 1	DUMMY	0	0	0	0	VCA_SS_OVF 1	DUMMY	0	0	0	0
SA3_OF 1	DUMMY	0	0	0	0	T0_OVF 1	DUMMY	0	0	0	0
SA2_OF 1	DUMMY	0	0	0	0	NA3_OVF 1	DUMMY	0	0	0	0
SA1_OF	DUMMY	0	0	0	0	NA1_OVF 1	DUMMY	0	0	0	0
-						±					

Cal	J3_OVF	YMMU	0		0	0	0	NA_rating NA_rating	0.	5 0.17268230 75 0.2354639	
AC_98	-	YMMUIC	0		0	0	0				
MA			· ·			· ·	· ·				
Nation	-	CIRCULAR	3.5		0	0	0				
MA		2	3.3			· ·	· ·	_			
TRANSPERTS	NAO OVF	YMMUJO	0		0	0	0	_			
TRANSPORT											
THEMSECTS Color								_			
	[TRANSECTS]										
1.04 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.04 1.05 1.05 1.04 1.05		n HEC-2 fo	ormat								
NC 0.073	;							_ =	3.		
Xi Ex2_OC	NC 0.073 0.073	0.073									
0.0 0.0 0.0			20	65	0.0	0.0	0.0				
GR 5615 0 5609 37.5 5609 47.5 5615 85 RA_Tating 4.25 5.4376324779 NC 0.083 0.083 0.083 0.083											
No.	GR 5615 0	5609	37.5	5609	47.5	5615	85				
NC 0.083	;										
Xi T3_OC	NC 0.083 0.083	0.083									
Second S	X1 J3_OC	4	20	100	0.0	0.0	0.0				39
No. 1.0	0.0 0.0							NA_rating	5.	25 12.069278	74
NC 0.084	GR 5614 0	5609	50	5609	70	5614	120		5.	5 15.089608	06
X1 SA2_OC	;							NA_rating	5.	75 18.435038	88
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	NC 0.084 0.084	0.084						NA_rating	6	22.098303	96
GR 5711 0 5705.5 35 5705.5 45 5711 80 NA_rating 7.36.548676 78.00.00 74 0.074	X1 SA2_OC	4	28	52	0.0	0.0	0.0	NA_rating	6.	25 26.073056	27
NC 0.074	0.0 0.0							NA_rating	6.	5 30.353674	03
NC 0.074	GR 5711 0	5705.5	5 35	5705.5	45	5711	80	NA_rating	6.	75 34.165486	76
X1 C4_OC	;							NA_rating	7	36.581876	51
0.0 0.0	NC 0.074 0.074	0.074						NA_rating	7.	25 45.878873	99
GR 5761 0 5755.5 65 5755.5 75 5761 140 NA_rating 8 100.5413678; NC 0.083 0.083 0.083 0.083 XI K4_OC		4	50	90	0.0	0.0	0.0	NA_rating	7.	5 61.500711	09
Nation N	0.0 0.0							NA_rating	7.	75 81.091684	56
NC 0.083 0.0	GR 5761 0	5755.5	5 65	5755.5	75	5761	140	NA_rating	8	100.54136	78
X1 K4_OC	;										
0.0 0.0 NA_rating 9 317.2942551 GR 5780		0.083									
GR 5780 0 5776 53 5776 73 5779 126 NA_rating 9.25 405.4828343; NC 0.099 0.099 0.099		4	25	101	0.0	0.0	0.0				
NA_rating								_ =			
NC 0.099 0.099 0.099	GR 5780 0	5776	53	5776	73	5779	126				
X1 17A								NA_rating	9.	4 464.29856	11
0.0 0.0 RB1-4_storage 0.5 328 GR 5712.5 0 5709.5 33 5709.5 49 5712.5 82 RB1-4_storage 1.5 2222 RB1-4_storage 2.5 22311 RB1-4_storage 3.5 41170 7170									_		
GR 5712.5 0 5709.5 33 5709.5 49 5712.5 82 RB1-4_storage 1.5 2222 RB1-4_storage 2.5 22311 [CURVES] RB1-4_storage 3.5 41170 RB1-4_storage 3.5 41170 RB1-4_storage 4.5 60321 RB1-4_storage 5.5 75858 RB1-4_rating Rating 0 0 0 RB1-4_storage 6.5 86332 RB1-4_rating 9.4 253 RB1-4_storage 7.5 95521 RB1-4_rating 11.5 410 RB1-4_storage 8.5 104107 RB1-4_rating 11.6 800 RB1-4_storage 9.5 112990 RB1-4_storage RB1-4_storage 10.5 121937 RB1-4_storage RB1-4_storage 10.5 121937 RB1-4_storage RB1-4_storage 11.5 131448		4	22	60	0.0	0.0	0.0		_		
RB1-4_storage 2.5 22311 RB1-4_storage 3.5 41170 RB1-4_storage 3.5 41170 RB1-4_storage 3.5 41170 RB1-4_storage 4.5 60321 RB1-4_storage 5.5 75858 RB1-4_rating Rating 0 0 0 RB1-4_storage 6.5 86332 RB1-4_rating 9.4 253 RB1-4_storage 7.5 95521 RB1-4_rating 11.5 410 RB1-4_storage 8.5 104107 RB1-4_rating 11.6 800 RB1-4_storage 9.5 112990 RB1-4_storage 7.5 112937 RB1-4_storage Rating Rating 0 0 0 RB1-4_storage 11.5 131448 0 0 0 0 0 0 0 0 0											
[CURVES] RB1-4_storage 3.5 41170 ;;Name Type X-Value Y-Value RB1-4_storage 4.5 60321 ;;	GR 5712.5 0	5709.5	5 33	5709.5	49	5712.5	82	— — -			
;;Name Type X-Value Y-Value RB1-4_storage 4.5 60321 ;;	5 3										
;;		_	1	7							
RB1-4_rating Rating 0 0 RB1-4_storage 6.5 86332 RB1-4_rating 9.4 253 RB1-4_storage 7.5 95521 RB1-4_rating 11.5 410 RB1-4_storage 8.5 104107 RB1-4_rating 11.6 800 RB1-4_storage 9.5 112990 ; RB1-4_storage 10.5 121937 NA_rating Rating 0 0 RB1-4_storage 11.5 131448		l'ype	X-Value	Y-Value							
RB1-4_rating 9.4 253 RB1-4_storage 7.5 95521 RB1-4_rating 11.5 410 RB1-4_storage 8.5 104107 RB1-4_rating 11.6 800 RB1-4_storage 9.5 112990 ; RB1-4_storage 10.5 121937 NA_rating Rating 0 0 RB1-4_storage 11.5 131448											
RB1-4_rating 11.5 410 RB1-4_storage 8.5 104107 RB1-4_rating 11.6 800 RB1-4_storage 9.5 112990 ; RB1-4_storage 10.5 121937 NA_rating Rating 0 0 0 11.5 131448		Rating									
RB1-4_rating 11.6 800 RB1-4_storage 9.5 112990 ; RB1-4_storage 10.5 121937 NA_rating Rating 0 0 0											
; RB1-4_storage 10.5 121937 NA_rating Rating 0 0 0											
NA_rating	rbi-4_rating		11.0	800							
	NA rating	ontina	0	0							
NA_1 acting 0.23 0.0993/1919		(attiig			7919				11	131440	
	NA_TACTIIA		0.43	0.07937	,,,,,			,			

NA_storage	Storage	0	2015	LR2	39.980	7737.180
NA_storage		0.4	4028.5	LR1	90.166	8615.430
NA_storage		1.4	7744.803	S3	624.102	6776.536
NA_storage		2.4	13712.894	S2	1313.661	6895.122
NA_storage		3.4	19405.348	S1	838.769	7732.998
NA_storage		4.4	28097.354	J8	6593.833	8275.416
NA_storage		5.4	47234.436	J7	5980.369	8205.306
NA_storage		6.4	60011.204	J6	5406.342	8262.270
NA_storage		7.4	65786.986	J5	4661.421	8336.762
NA_storage		8.4	65786.986	J2	4034.812	8319.235
NA_storage		9.4	65786.986	J4	4337.162	8060.703
				J3	4931.228	7223.949
[REPORT]				J1	4424.799	7188.708
;;Reporting Opti	ons			VCA1	5848.912	5554.265
INPUT NO				VCA2	6650.797	5506.064
CONTROLS NO				NA1	6855.406	5031.735
SUBCATCHMENTS AL	L			NA2	8013.564	5032.820
NODES ALL				NA4	8740.957	4603.396
LINKS ALL				NA3	8459.378	4196.992
				SA4	8109.965	3968.022
[TAGS]				SA3	7325.608	4024.987
				SA2	6799.782	4125.770
[MAP]				SA1	5752.511	4480.703
	.273 0.000	12727.273 1	0000.000	C2	7268.643	3573.653
Units None	.273 0.000			17B	8233.267	1213.789
1,011				17A	7202.397	1595.503
[COORDINATES]				K1	7022.480	1675.735
;;Node	X-Coord	V-	Coord	K2	7664.343	1794.869
;;				K3	8692.782	1437.468
Belleview_LR	-123.123	82	76.677	K4	8644.156	2322.461
Havana_LR	-252.770		40.991	K6	9283.588	2008.823
Peoria_S	1527.855		54.128	K7	10335.963	1338.891
Stock_Pond_S	1010.237		02.238	K5	9222.805	1247.827
Parker_J	4212.105		15.032	C9	9796.991	2473.799
Junction_J3	4882.479		62.368	C8	9735.645	3152.991
Junction_J4	4371.553		68.648	C7	9152.854	3753.310
Regis_Jesuit_VCA			01.173	C4	8561.300	3674.436
Parker_SA	5972.160		15.175	C3	7728.741	3547.361
Norfolk_SA	6718.568		42.553	C6	8736.575	2627.165
Richfield_SA	7370.156		37.690		8061.765	
_				C5		2898.842
Parker_C	6631.041		92.549	C1	6791.018	2885.696
Hinsdale_C	7034.637		51.534	T1	7991.654	2578.964
Richfield_C	7501.446		29.969	GR1	5274.885	5913.579
Telluride_C	8114.133		85.889	LR_outfall	600.387	9309.666
Bridle_Trail_C	8790.034		90.751	S_outfall	1366.321	8133.280
Biscay_C	9016.145		98.679	J_outfall	3129.927	7841.141
Parker_K	7199.965		62.945	VCA_outfall	4662.222	5584.703
Bridle_Trail_K	7968.256		28.274	NA_outfall	4920.786	4725.636
Confluence_K	8814.347		02.480	SA_outfall	4899.957	4644.351
Future_Road_K	9385.702		66.961	T_outfall	6384.231	2499.017
Parker_17	7423.645	14	59.350	C_outfall	5685.266	3389.801
LR3	-491.676		30.960	K_outfall	6623.748	1685.461

17_outfall	7097.851	1366.961	
GR_outfall	4636.318	5812.849	
Lewiston_J	6015.436	7829.562	WARNING 04: minimum elevation drop used for Conduit LR3_OF
Laredo_J	5773.126	7792.686	WARNING 04: minimum elevation drop used for Conduit LR2_OF
Shalom_J	4467.849	7866.084	WARNING 04: minimum elevation drop used for Conduit LR1_OF
Fair_Place_VCA	5272.176	5592.329	WARNING 04: minimum elevation drop used for Conduit S3_OF
Parker_T1	6901.788	2534.646	WARNING 04: minimum elevation drop used for Conduit S2_OF
Waco_NA	8270.083	4743.724	WARNING 04: minimum elevation drop used for Conduit S_OF
Buckley_NA1	6942.831	4717.330	WARNING 04: minimum elevation drop used for Conduit J4_OF
out_RB1-4_pond	5207.572	7550.921	WARNING 04: minimum elevation drop used for Conduit J3_OF
Parker_NA	6049.035	4729.177	WARNING 04: minimum elevation drop used for Conduit J1_OF
RB1-4_pond	5244.212	7583.078	WARNING 04: minimum elevation drop used for Conduit J2_OF
NA_pond	7032.246	4835.941	WARNING 04: minimum elevation drop used for Conduit VCA2_OF
NA_pond	7032.240	4033.941	WARNING 04: minimum elevation drop used for Conduit VCA2_OF WARNING 04: minimum elevation drop used for Conduit SA4_OF
[MEDUT CEC]			
[VERTICES]	W. Connell	T C	WARNING 04: minimum elevation drop used for Conduit SA3_OF
;;Link	X-Coord	Y-Coord	WARNING 04: minimum elevation drop used for Conduit SA2_OF
			WARNING 04: minimum elevation drop used for Conduit SA1_OF
LR1_OC	-39.481	9016.916	WARNING 04: minimum elevation drop used for Conduit C2_OF
LR2_OC	-89.666	7891.920	WARNING 04: minimum elevation drop used for Conduit C3_OF
S_OC_B	1181.705	7507.163	WARNING 04: minimum elevation drop used for Conduit C4_OF
S_OC_B	1478.637	7703.723	WARNING 04: minimum elevation drop used for Conduit C5_OF
J3_SS	5076.347	7414.844	WARNING 04: minimum elevation drop used for Conduit C6_OF
J6_SS	5319.937	7778.454	WARNING 04: minimum elevation drop used for Conduit C7_OF
C1_OC	5857.889	3290.118	WARNING 04: minimum elevation drop used for Conduit C9_OF
K1_OC	6808.526	1619.816	WARNING 04: minimum elevation drop used for Conduit C1_OF
LR1_OF	198.901	9004.369	WARNING 04: minimum elevation drop used for Conduit K1_OF
J8_OF	6300.610	7900.577	WARNING 04: minimum elevation drop used for Conduit K2_OF
J2_OF	3785.394	7860.260	WARNING 04: minimum elevation drop used for Conduit 17B_OF
NA1_OF	6340.787	4761.594	WARNING 04: minimum elevation drop used for Conduit K3_OF
NA3_OF	8082.527	4313.694	WARNING 04: minimum elevation drop used for Conduit K5_OF
NA3_OF	7861.278	4717.290	WARNING 04: minimum elevation drop used for Conduit K6_OF
C3_OF	7445.526	3270.667	WARNING 04: minimum elevation drop used for Conduit K7_OF
C4_OF	7754.301	3081.026	WARNING 04: minimum elevation drop used for Conduit K4_OF
C6_OF	8345.107	3068.869	WARNING 04: minimum elevation drop used for Conduit 17A_OF
C8_OF	9042.889	3005.656	WARNING 04: minimum elevation drop used for Conduit GR1_OF
C1_OF	5957.572	3273.098	WARNING 02: maximum depth increased for Node Junction_J4
	5809.263	3309.568	
C1_OF			WARNING 02: maximum depth increased for Node Fair_Place_VCA
K3_OF	8118.996	1824.045	***********
K5_OF	8999.126	1607.659	
J7_SS_OVF	5902.881	7873.780	NOTE: The summary statistics displayed in this report are
J6_SS_OVF	5309.509	7786.517	based on results found at every computational time step,
J4_SS_OVF	4380.048	7844.493	not just on results from each reporting time step.
VCA_SS_OVF	5048.151	5604.438	************
T0_OVF	6637.415	2457.233	
NA3_OVF	7598.916	4792.742	*******
NA1_OVF	6568.539	4761.101	Analysis Options
J3_OVF	5069.958	7505.387	********
NA0_OVF	5517.588	4782.996	Flow Units CFS
			Process Models:
			Rainfall/Runoff NO
			RDII NO

Snowmelt NO

EPA STORM WATER MANAGEMENT MODEL - VERSION 5.1 (Build 5.1.012)

Flow Routing		
**************************************	Volume acre-feet	Volume 10^6 gal
**************************************	0.000 0.000 0.000 0.000 559.246 566.949 0.000 0.000 0.000 0.000	0.000 0.000 0.000 182.239 184.749 0.000 0.000 0.000 0.000
**************************************	dexes	
**************************************	: 5.00 sec : 5.00 sec : 5.00 sec	
Percent in Steady State Average Iterations per Step Percent Not Converging	: 0.00 : 1.00 : 0.00	

Node Depth Summary *******

	_					
			Average	Maximum	Maximum	Time of
Max Repor	ted					
			Depth	Depth	HGL	
Occurrence	Max Depth		E o o t	E o o t	E o o t	daa
Node hr:min	Foot	Type	reet	Feet	reet	aays
	_					
Belleview_	LR	JUNCTION	0.22	3.46	5612.46	0
00:49	3.46					
Havana_LR		JUNCTION	0.16	2.89	5647.89	0
00:40						
Peoria_S		JUNCTION	0.19	1.86	5581.86	0
01:00			0 1 1	0 40	5600 40	0
Stock_Pond		JUNCTION	0.17	2.43	5623.43	0
00:45		TIMOREON	0.24	2 40	E600 40	0
Parker_J 01:11		JUNCTION	0.34	3.42	5622.42	0
Junction_J		JUNCTION	0 35	3 94	5666 94	0
01:20		UUNCIION	0.33	3.94	3000.94	U
Junction_J		JUNCTION	0 18	3.27	5633 14	0
00:42		0 011011 1011	0.10	3.27	3033.11	O
Regis_Jesu		JUNCTION	0.14	2.47	5691.47	0
00:40				_,_,		-
Parker_SA		JUNCTION	0.23	2.35	5658.35	0
01:07						
Norfolk_SA		JUNCTION	0.22	2.37	5722.37	0
00:58						
Richfield_	SA	JUNCTION	0.17	1.94	5761.94	0
00:55						
Parker_C		JUNCTION	0.40	3.90	5701.90	0
01:11						
Hinsdale_C		JUNCTION	0.36	3.66	5721.66	0
01:07		TITALOMETON	0 21	2 20	F740 20	0
Richfield_ 01:03		JUNCTION	0.31	3.30	5/48.30	0
Telluride_		JUNCTION	0.25	3.06	5777.06	0
00:57	3.06	UUNCIION	0.25	3.00	3777.00	U
Bridle_Tra		JUNCTION	0.20	2.75	5816.75	0
00:48	2.75	0 01101 1 011	0.20	2.73	3010.73	· ·
Biscay_C		JUNCTION	0.13	1.89	5829.89	0
00:45	1.89					
Parker_K		JUNCTION	0.28	3.30	5727.30	0
01:06	3.30					
Bridle_Tra	il_K	JUNCTION	0.24	3.14	5768.14	0
00:56	3.14					
Confluence	_	JUNCTION	0.15	2.46	5833.46	0
00:46	2.46					

Future_Ro		JUNCTION	0.09	1.90	5891.90	0	C2		JUNCTION	0.00	0.00	5698.00	0
00:35	1.90					_	00:00	0.00					
Parker_17		JUNCTION	0.11	1.99	5730.99	0	17B	0.00	JUNCTION	0.00	0.00	5729.00	0
00:40 LR3	1.99	JUNCTION	0.00	0.00	5645.00	0	00:00 17A	0.00	JUNCTION	0 00	0.00	5695.00	0
00:00	0.00	UUNCIION	0.00	0.00	3043.00	U	00:00	0.00	UUNCIION	0.00	0.00	5695.00	U
LR2	0.00	JUNCTION	0.00	0.00	5609.00	0	K1	0.00	JUNCTION	0.00	0.00	5690.00	0
00:00	0.00						00:00	0.00					
LR1		JUNCTION	0.00	0.00	5552.00	0	K2		JUNCTION	0.00	0.00	5724.00	0
00:00	0.00						00:00	0.00					
S3		JUNCTION	0.00	0.00	5621.00	0	К3		JUNCTION	0.00	0.00	5765.00	0
00:00	0.00		0.00	0 00	5500 00	•	00:00	0.00		0.00	0 00	5555	•
S2	0 00	JUNCTION	0.00	0.00	5580.00	0	K4 00:00	0 00	JUNCTION	0.00	0.00	5765.00	0
00:00 S1	0.00	JUNCTION	0.00	0.00	5565.00	0	K6	0.00	JUNCTION	0.00	0.00	5831.00	0
00:00	0.00	UUNCIION	0.00	0.00	3303.00	U	00:00	0.00	UUNCIION	0.00	0.00	3631.00	U
J8	0.00	JUNCTION	0.00	0.00	5738.00	0	K7	0.00	JUNCTION	0.00	0.00	5890.00	0
00:00	0.00						00:00	0.00	0 01.01 101.		0.00		· ·
J7		JUNCTION	0.00	0.00	5729.00	0	K5		JUNCTION	0.00	0.00	5831.00	0
00:00	0.00						00:00	0.00					
Ј6		JUNCTION	0.00	0.00	5688.00	0	C9		JUNCTION	0.00	0.00	5828.00	0
00:00	0.00						00:00	0.00					
J5	0.00	JUNCTION	0.00	0.00	5645.00	0	C8	0.00	JUNCTION	0.00	0.00	5817.00	0
00:00 J2	0.00	JUNCTION	0.00	0.00	5579.00	0	00:00 C7	0.00	JUNCTION	0.00	0.00	5814.00	0
00:00	0.00	UUNCIION	0.00	0.00	3379.00	U	00:00	0.00	UUNCIION	0.00	0.00	3614.00	U
J4	0.00	JUNCTION	0.00	0.00	5619.00	0	C4	0.00	JUNCTION	0.00	0.00	5745.00	0
00:00	0.00					-	00:00	0.00					
Ј3		JUNCTION	0.00	0.00	5619.00	0	C3		JUNCTION	0.00	0.00	5718.00	0
00:00	0.00						00:00	0.00					
J1		JUNCTION	0.00	0.00	5579.00	0	C6		JUNCTION	0.00	0.00	5774.00	0
00:00	0.00	TTTT GET - 0.17	0.00	0 00	5621 00	0	00:00	0.00	TITLE TO	0.00	0 00	5545 00	0
VCA1 00:00	0.00	JUNCTION	0.00	0.00	5631.00	0	C5 00:00	0.00	JUNCTION	0.00	0.00	5745.00	0
VCA2	0.00	JUNCTION	0.00	0.00	5689.00	0	C1	0.00	JUNCTION	0.00	0.00	5658.00	0
00:00	0.00	0.01/01/101/	0.00	0.00	3003.00	O	00:00	0.00	OUNCITON	0.00	0.00	3030.00	O
NA1		JUNCTION	0.00	0.00	5631.00	0	T1		JUNCTION	0.00	0.00	5710.00	0
00:00	0.00						00:00	0.00					
NA2		JUNCTION	0.00	0.00	5765.00	0	GR1		JUNCTION	0.00	0.00	5620.00	0
00:00	0.00						00:00	0.00					
NA4	0.00	JUNCTION	0.00	0.00	5833.00	0	LR_outfal		OUTFALL	0.26	3.27	5555.27	0
00:00	0.00	TIMOTTON	0 00	0 00	F760 00	0	01:08	3.27	OTTERAT	0 00	0 22	FF67 22	0
NA3 00:00	0.00	JUNCTION	0.00	0.00	5769.00	0	S_outfall 01:01	2.33	OUTFALL	0.22	2.33	5567.33	0
SA4	0.00	JUNCTION	0.00	0 00	5760.00	0	J_outfall		OUTFALL	0.39	3 40	5582.40	0
00:00	0.00	0.01/01/101/	0.00	0.00	3700.00	O	01:27	3.40	001111111	0.33	3.10	3302.10	Ü
SA3		JUNCTION	0.00	0.00	5720.00	0	VCA_outfa		OUTFALL	0.20	2.43	5624.43	0
00:00	0.00						01:43	2.43					
SA2		JUNCTION	0.00	0.00	5656.00	0	NA_outfal		OUTFALL	0.55	2.90	5633.90	0
00:00	0.00		0 00	0.05	F.C.O	0	02:20	2.89		0 10		-	•
SA1	0.00	JUNCTION	0.00	0.00	5633.00	0	SA_outfal		OUTFALL	0.19	2.34	5635.34	0
00:00	0.00						01:08	2.34					

T_outfall		OUTFALL	0.17	2.30	5675.30	0
00:51	2.30					
C_outfall		OUTFALL	0.41	3.85	5661.85	0
01:21	3.85					
K_outfall		OUTFALL	0.29	3.28	5693.28	0
01:13	3.28					
17_outfall		OUTFALL	0.11	1.97	5696.97	0
00:46	1.97					
GR_outfall		OUTFALL	0.00	0.00	5620.00	0
00:00	0.00					
Lewiston_J		DIVIDER	0.21	3.28	5734.44	0
00:33	3.28					
Laredo_J		DIVIDER	0.28	4.51	5722.26	0
00:34	4.51					
Shalom_J		DIVIDER	0.18	3.27	5642.00	0
00:39	3.27					
Fair_Place	_VCA	DIVIDER	0.20	2.45	5628.75	0
00:45	2.45					
Parker_T1		DIVIDER	0.17	2.31	5707.91	0
00:50	2.31					
Waco_NA		DIVIDER	0.13	2.05	5827.80	0
00:32	2.05					
Buckley_NA	1	DIVIDER	0.47	3.28	5759.30	0
00:45	3.28					
out_RB1-4_j	oond	DIVIDER	0.35	3.94	5691.44	0
01:19	3.94					
Parker_NA		DIVIDER	0.56	3.29	5674.98	0
01:37	3.29					
RB1-4_pond		STORAGE	0.88	10.73	5698.23	0
	10.73					
NA_pond		STORAGE	2.95	8.51	5773.09	0
01:04	8.51					

		-1	Maximum	Maximum	
Lateral	Total	Flow	_	_	
		_	Lateral	Total	Time of Max
Inflow	Inflow	Balance			
			Inflow	Inflow	Occurrence
Volume	Volume	Error			
Node		Type	CFS	CFS	days hr:min
10 ^ 6 gal	10 ^ 6 gal	Percent			
Belleview	_LR	JUNCTION	0.00	403.67	0 00:49
0 10	.6 0.	000			

	Havana_LR	JUNCTION	0.00	298.37	0	00:40
0	6.82 Peoria_S	0.000 JUNCTION	0.00	101.97	0	01:00
0	4.69	0.000	0.00	101.97	U	01.00
	Stock_Pond_S	JUNCTION	0.00	210.26	0	00:45
0	6.29	0.000	0.00	F2F 40	0	01.11
0	Parker_J 25.7	JUNCTION 0.000	0.00	535.49	0	01:11
U	Junction_J3	JUNCTION	0.00	352.47	0	01:20
0	16.2	0.000	0.00	332.17	Ü	01.70
	Junction_J4	JUNCTION	0.00	121.87	0	00:42
0	3.18	0.000				
	Regis_Jesuit_VCA	JUNCTION	0.00	150.53	0	00:40
0	3.68	0.000				
	Parker_SA	JUNCTION	0.00	317.99	0	01:05
0		0.000	0.00	004 51	•	00 50
0	Norfolk_SA	JUNCTION	0.00	224.51	0	00:58
0	8.56 Richfield_SA	0.000 JUNCTION	0.00	126.80	0	00:55
0	4.91	0.000	0.00	120.00	U	00.55
U	Parker_C	JUNCTION	0.00	857.09	0	01:11
0	31.6	0.000	0.00	037.03	Ü	01 11
	Hinsdale_C	JUNCTION	0.00	747.71	0	01:07
0	27.2	0.000				
	Richfield_C	JUNCTION	0.00	657.82	0	01:03
0	23.2	0.000				
	Telluride_C	JUNCTION	0.00	507.99	0	00:57
0	16.6	0.000				
_	Bridle_Trail_C	JUNCTION	0.00	411.64	0	00:48
0	12.8	0.000 JUNCTION	0.00	178.39	0	00:45
0	Biscay_C 5.49	0.000	0.00	170.39	U	00.45
U	Parker_K	JUNCTION	0.00	838.96	0	01:06
0	26.4	0.000	0.00	030.30	Ü	01.00
	Bridle_Trail_K	JUNCTION	0.00	729.46	0	00:56
0		0.000				
	Confluence_K	JUNCTION	0.00	505.48	0	00:46
0		0.000				
	Future_Road_K	JUNCTION	0.00	300.21	0	00:35
0	5.71	0.000	0.00	220 15	0	00.40
0	Parker_17 5.41	JUNCTION	0.00	229.15	0	00:40
U	LR3	0.000 JUNCTION	298.37	298.37	0	00:40
6	.82 6.82	0.000	200.57	200.57	O	00-10
	LR2	JUNCTION	129.14	129.14	0	00:45
3 .	.73 3.73	0.000				
	LR1	JUNCTION	101.66	101.66	0	01:00
4	.23 4.23	0.000				
	S3	JUNCTION	210.26	210.26	0	00:45
6.	.29 6.29	0.000	101 05	101 05	_	01.00
1	S2	JUNCTION	101.97	101.97	0	01:00
4	.69 4.69	0.000				

S1		JUNCTION	141.81	141.81	0	00:50
4.34	4.34	0.000				
Ј8		JUNCTION	232.67	232.67	0	00:45
6.25	6.25	0.000				
J7		JUNCTION	191.47	191.47	0	00:45
5.23	5.23	0.000				
J6		JUNCTION	146.38	146.38	0	00:50
4.77	4.77	0.000				
J5		JUNCTION	122.80	122.80	0	00:40
3.18	3.18	0.000				
J2	1 50	JUNCTION	37.41	37.41	0	00:50
1.53	1.53	0.000				
J4	1 45	JUNCTION	66.39	66.39	0	00:40
1.47	1.47	0.000	000 06	000 06	0	00-40
J3	4 00	JUNCTION	209.86	209.86	0	00:40
4.82	4.82	0.000	70 04	70 04	^	01.05
J1 3.51	3.51	JUNCTION	70.04	70.04	0	01:05
	3.51	0.000	201 40	201 40	0	00.45
VCA1 5.97	5.97	JUNCTION 0.000	201.48	201.48	0	00:45
VCA2	5.97	JUNCTION	150.53	150.53	0	00:40
3.68	3.68	0.000	130.33	150.55	U	00.40
NA1	3.00	JUNCTION	208.71	208.71	0	00:40
4.92	4.92	0.000	200.71	200.71	U	00.40
NA2	4.72	JUNCTION	225.69	225.69	0	00:45
6.06	6.06	0.000	223.07	223.07	O	00.13
NA4	0.00	JUNCTION	58.66	58.66	0	00:40
1.64	1.64	0.000	30.00	30.00	Ü	00 10
NA3	1.01	JUNCTION	103.46	103.46	0	00:55
4.52	4.52	0.000		100.10	Ü	
SA4		JUNCTION	126.80	126.80	0	00:55
4.91	4.91	0.000				
SA3		JUNCTION	108.73	108.73	0	00:50
3.6	3.6	0.000				
SA2		JUNCTION	105.35	105.35	0	00:50
3.89	3.89	0.000				
SA1		JUNCTION	163.67	163.67	0	00:40
4.01	4.01	0.000				
C2		JUNCTION	154.81	154.81	0	00:45
4.39	4.39	0.000				
17B		JUNCTION	229.15	229.15	0	00:40
5.41	5.41	0.000				
17A		JUNCTION	50.58	50.58	0	00:35
0.95	0.95	0.000				
K1		JUNCTION	79.95	79.95	0	00:35
1.69	1.69	0.000				
K2		JUNCTION	170.56	170.56	0	00:45
4.88	4.88	0.000				
K3		JUNCTION	98.30	98.30	0	00:45
3.19	3.19	0.000	100	100 0=	_	00 (=
K4	F 0.6	JUNCTION	188.35	188.35	0	00:45
5.36	5.36	0.000				

К6		JUNCTION	157.48	157.48	0	00:45
4.52	4.52	0.000	137.10	137.10	Ü	00 13
к7		JUNCTION	300.21	300.21	0	00:35
5.71	5.71	0.000				
K5		JUNCTION	89.58	89.58	0	00:40
2.19	2.19	0.000				
C9		JUNCTION	178.39	178.39	0	00:45
5.49	5.49	0.000			_	
C8	4 00	JUNCTION	158.13	158.13	0	00:45
4.82 C7	4.82	0.000	70 21	70 21	0	00:45
2.5	2.5	JUNCTION 0.000	79.31	79.31	0	00.45
2.3 C4	2.5	JUNCTION	104.80	104.80	0	00:55
4.33	4.33	0.000	101.00	101.00	O	00.33
C3	1.33	JUNCTION	101.60	101.60	0	00:50
3.92	3.92	0.000			-	
С6		JUNCTION	122.15	122.15	0	00:45
3.6	3.6	0.000				
C5		JUNCTION	60.80	60.80	0	00:50
2.25	2.25	0.000				
C1		JUNCTION	176.28	176.28	0	00:45
5.2	5.2	0.000			_	
T1	2 60	JUNCTION	104.95	104.95	0	00:50
3.62	3.62	0.000	150 05	150 05	0	00.40
GR1 4.14	4.14	JUNCTION 0.000	150.25	150.25	0	00:40
	outfall	OUTFALL	0.00	453.53	0	01:07
0	15.3	0.000	0.00	133.33	Ü	0107
	ıtfall	OUTFALL	0.00	422.74	0	01:00
0	15.5	0.000				
J_ou	ıtfall	OUTFALL	0.00	613.26	0	01:24
0	31.5	0.000				
	outfall	OUTFALL	0.00	349.18	0	00:45
0	9.65	0.000			_	
	outfall	OUTFALL	0.00	476.03	0	00:59
0	17.1	0.000	0 00	100.00	0	01:04
_	outfall 16.5	OUTFALL 0.000	0.00	426.06	0	01.04
	ıtfall	OUTFALL	0.00	104.71	0	00:51
0	3.61	0.000	0.00	101.71	O	00.21
	ıtfall	OUTFALL	0.00	942.12	0	01:19
0	36.9	0.000				
K_ou	ıtfall	OUTFALL	0.00	859.16	0	01:12
0	28.2	0.000				
17_c	outfall	OUTFALL	0.00	266.65	0	00:45
0	6.37	0.000				
	outfall	OUTFALL	0.00	150.25	0	00:40
0	4.14	0.000	0.00	020 68	0	00.45
	.ston_J	DIVIDER	0.00	232.67	0	00:45
0 T.are	6.25 edo_J	0.000 DIVIDER	0.00	424.14	0	00:45
0	11.5	0.000	0.00	744.14	U	00.45
J	11.5	0.000				

	Shalom_J	DIVIDER	0.00	122.80	0	00:40
0	3.18	0.000				
	Fair_Place_VCA	DIVIDER	0.00	349.24	0	00:45
0	9.64	0.000				
	Parker_T1	DIVIDER	0.00	104.95	0	00:50
0	3.62	0.000				
	Waco_NA	DIVIDER	0.00	58.66	0	00:40
0	1.64	0.000				
	Buckley_NA1	DIVIDER	0.00	324.75	0	01:03
0	12.2	0.000				
	out_RB1-4_pond	DIVIDER	0.00	352.51	0	01:19
0	16.2	0.000				
	Parker_NA	DIVIDER	0.00	476.03	0	00:59
0	17.1	0.000				
	RB1-4_pond	STORAGE	0.00	569.69	0	00:45
0	16.2	0.011				
	NA_pond	STORAGE	0.00	225.69	0	00:45
0	6.06	0.028				

No nodes were flooded.

			Average	Avg	Evap	Exfil	Maximum
Max	Time	of Max	Maximum				
			Volume	Pcnt	Pcnt	Pcnt	Volume
Pcnt	00	currence	Outflow				
Stor	age U	nit	1000 ft3	Full	Loss	Loss	1000 ft3
Full	day	s hr:min	CFS				
RB1-	4_pond	d	43.139	5	0	0	690.474
88	0	01:18	352.51				
NA_p	ond		43.569	13	0	0	285.349
83	0	01:04	175.99				

Outfall Node	Flow	Avg	Max	Total
	Freq	Flow	Flow	Volume
	Pcnt	CFS	CFS	10^6 gal
LR_outfall S_outfall J_outfall VCA_outfall NA_outfall SA_outfall T_outfall C_outfall K_outfall	99.13 79.69 99.30 44.97 99.08 99.30 22.65 99.30 99.30	23.83 30.02 49.02 33.19 26.74 25.75 24.69 57.56 43.94 22.56	453.53 422.74 613.26 349.18 476.03 426.06 104.71 942.12 859.16 266.65	15.265 15.460 31.456 9.646 17.120 16.526 3.615 36.938 28.195 6.371
GR_outfall System	14.91	43.00	150.25	4.143
	72.85	380.29	4627.49	184.735

Maximum Time of Max Maximum Max/ Max/ |Flow| Veloc Occurrence Full Full Link CFS days hr:min Type ft/sec Flow Depth LR1_OC CHANNEL 355.23 0 01:08 3.92 0.24 0.54 LR2_OC CHANNEL 278.12 0 00:50 3.75 0.17 0.46 101.42 S_OC_A CHANNEL 0 01:05 2.55 0.07 0.31 S_OC_B CHANNEL 191.94 0 01:01 3.51 0.12 0.39 J1_OC CHANNEL 526.08 0 01:27 3.35 0.42 0.68 J3_OC 351.13 CHANNEL 0 01:25 4.41 0.17 0.45 J4_OC CHANNEL 121.27 0 00:44 2.64 0.06 0.27 J3_SS 352.47 CONDUIT 0 01:20 17.90 0.77 0.66 J4_SS CONDUIT 121.87 0 00:42 11.16 1.00 0.82

76 00	aa	245 5:	0 01 01	16.00	74 05	D	<i></i>	_	00 40	
J6_SS	CONDUIT	347.74	0 01:01	16.83	J4_OF	DUMMY	66.39	0	00:40	
1.00 0.82					J3_OF	DUMMY	209.86	0	00:40	
J7_SS	CONDUIT	170.68	0 01:08	15.55	J1_OF	DUMMY	70.04	0	01:05	
1.00 0.82					J2_OF	DUMMY	37.41	0	00:50	
VCA_SS_OUT	CONDUIT	115.86	0 01:43	6.08	VCA1_OF	DUMMY	201.48	0	00:45	
1.00 0.80					VCA2_OF	DUMMY	150.53	0	00:40	
VCA1_SS	CONDUIT	147.93	0 00:45	14.61	NA1_OF	DUMMY	208.71	0	00:40	
0.41 0.44					NA2_OF	DUMMY	225.69	0	00:45	
NA1_SS	CONDUIT	196.00	0 01:37	18.03	NA4_OF	DUMMY	58.66	0	00:40	
1.00 0.82					NA3_OF	DUMMY	103.46	0	00:55	
NA3_SS	CONDUIT	44.22	0 01:10	10.70	SA4_OF	DUMMY	126.80	0	00:55	
1.01 0.82					SA3_OF	DUMMY	108.73	0	00:50	
SA1_SS	CONDUIT	317.45	0 01:08	11.36	SA2_OF	DUMMY	105.35	0	00:50	
0.26 0.39	00112011	317.13	0 01 00	11.30	SA1_OF	DUMMY	163.67	0	00:40	
SA2_OC	CHANNEL	221.56	0 01:07	3.84	C2_OF	DUMMY	154.81	0	00:45	
0.14 0.43	CHAMILL	221.50	0 01.07	3.01	C3_OF	DUMMY	101.60	0	00:50	
SA3_OC	CHANNEL	123.79	0 01:02	2.96			104.80	0	00:55	
	CHANNEL	143.79	0 01.02	2.90	C4_OF	DUMMY		-		
0.09 0.35	CONDITE	104 71	0 00.51	14 00	C5_OF	DUMMY	60.80	0	00:50	
T0_SS	CONDUIT	104.71	0 00:51	14.02	C6_OF	DUMMY	122.15	0	00:45	
0.63 0.58					C7_OF	DUMMY	79.31	0	00:45	
C1_OC	CHANNEL	834.46	0 01:21	4.01	C8_OF	DUMMY	158.13	0	00:45	
0.42 0.70					C9_OF	DUMMY	178.39	0	00:45	
C2_OC	CHANNEL	743.91	0 01:12	3.87	C1_OF	DUMMY	176.28	0	00:45	
0.36 0.66					T1_OF	DUMMY	104.95	0	00:50	
C3_OC	CHANNEL	654.25	0 01:08	4.09	K1_OF	DUMMY	79.95	0	00:35	
0.29 0.60					K2_OF	DUMMY	170.56	0	00:45	
C4_OC	CHANNEL	500.33	0 01:04	3.63	17B_OF	DUMMY	229.15	0	00:40	
0.24 0.55					K3_OF	DUMMY	98.30	0	00:45	
C6_OC	CHANNEL	397.45	0 00:58	3.56	K5_OF	DUMMY	89.58	0	00:40	
0.18 0.49					K6_OF	DUMMY	157.48	0	00:45	
C8_OC	CHANNEL	177.03	0 00:50	2.93	K7_OF	DUMMY	300.21	0	00:35	
0.08 0.34					K4_OF	DUMMY	188.35	0	00:45	
K1_OC	CHANNEL	824.85	0 01:13	3.63	17A_OF	DUMMY	50.58	0	00:35	
0.62 0.82					J7_SS_OVF	DUMMY	62.17	0	00:45	
K2_OC	CHANNEL	701.19	0 01:07	3.45	J6_SS_OVF	DUMMY	77.14	0	00:45	
0.53 0.77					J4_SS_OVF	DUMMY	0.80	0	00:40	
K4_OC	CHANNEL	469.75	0 00:58	3.63	VCA_SS_OVF	DUMMY	234.24	0	00:45	
0.29 0.59	CIMMINT	100.75	0 00-50	3.03	TO_OVF	DUMMY	0.00	0	00:00	
K5_OC	CHANNEL	265.26	0 00:47	3.30	NA3_OVF	DUMMY	14.96	-	00:40	
0.16 0.45	CHANNEL	203.20	0 00.47	3.30			129.55		01:03	
	CILA MATELI	222 42	0 00.46	2 06	NA1_OVF	DUMMY				
17A_OC	CHANNEL	223.42	0 00:46	3.06	J3_OVF	DUMMY	0.00	0	00:00	
0.40 0.65		000 00	0 00 10		GR1_OF	DUMMY	150.25	0	00:40	10.00
LR3_OF	DUMMY	298.37	0 00:40		NA0_SS	CONDUIT	98.74	0	02:20	12.02
LR2_OF	DUMMY	129.14	0 00:45		1.01 0.82					
LR1_OF	DUMMY	101.66	0 01:00		NA0_OVF	DUMMY	378.13		00:59	
S3_OF	DUMMY	210.26	0 00:45		outlet_RB1-4_pond	DUMMY	352.51	0	01:19	
S2_OF	DUMMY	101.97	0 01:00		outlet_NA_pond	DUMMY	175.99	0	01:04	
S_OF	DUMMY	141.81	0 00:50							
J8_OF	DUMMY	232.67	0 00:45							
J7_OF	DUMMY	191.47	0 00:45		**********	****				
J6_OF	DUMMY	146.38	0 00:50		Conduit Surcharge S	Summary				
 J5_OF	DUMMY	122.80	0 00:40		*******	_				

	 	 - –																

				Hours
Hours		Hours Full		Above Full
Capacity Conduit Limited	Both Ends	Upstream	Dnstream	Normal Flow
J6_SS	0.01	0.01	0.01	0.02
0.01	0 01	0 01	0 01	0.01
J7_SS 0.01	0.01	0.01	0.01	0.01
VCA_SS_OUT	0.01	0.01	0.01	0.03
NA1_SS	0.01	0.01	0.01	0.03
0.01 NA3_SS	0.01	0.01	0.01	0.07
0.01 NA0_SS	0.01	0.01	0.01	0.04
0.01				

Analysis begun on: Mon Feb 11 10:59:27 2019 Analysis ended on: Mon Feb 11 10:59:28 2019

Total elapsed time: 00:00:01